<span>The proteins that are embedded in the cell membrane act as channels to transport substances in and out of the cell.</span>
Answer:
Frequency of the B3 allele 
Explanation:
The allele frequencies in a given population remain constant which means that every generation will have the same gene pool across the generations. As per Hardy Weinberg’s first equilibrium equation, the sum of frequency of all the alleles at a given locus is equal to one
Thus, if "p" represents the frequency of B1 allele and "q" represents the frequency of B2 allele and "r" represents the allele for B3 allele. Then, sum or "p", "q" and "r" is equal to one.

Substituting the given values, we get -

Answer:
See the answer below
Explanation:
Let the disorder be represented by the allele a.
Since the disease is an autosomal recessive one, affected individuals will have the genotype aa and normal individuals will have the genotype Aa or AA.
Since the four adults are carriers, their genotypes would be Aa.
Aa x Aa
Progeny: AA 2Aa aa
Probability of being affected = 1/4
Probability of being a carrier = 1/2
Probability of not being affected = 3/4
(a) The chance that the child second child of Mary and Frank will have alkaptonuria = 1/2
(b) The chance that the third child of Sara and James will be free of the condition = 3/4
(c)
(d) If someone has no family history of the disorder, their genotype would be AA.
AA x aa
4 Aa
<em>The chance that a child with alkaptonuria will have an offspring with alkaptonuria if the child's mate has no family history </em>= 0
(e)
(f) <em>The chance that a child with alkaptonuria will have an offspring with alkaptonuria if the child's mate has no family history</em> = 0
I believe the part of the cell theory you can use to refute his claim is that cells are the smallest unit of life and more importantly that all cells come from other living cells.