Answer:
Desmosomes
Explanation:
Desmosomes are cellular structures that adhere to neighboring cells. Its function is to hold the epithelial cells together, associating the intermediate filament cytoskeletons of neighboring cells, thus forming a transcellular network with high resistance to mechanical traction. It thus allows the cells to maintain their shape and the epithelial sheet to exist in a stable form. Inside cells act as anchoring sites for intermediate rope-shaped filaments, which form a structural network in the cytoplasm providing a certain rigidity. Through these junctions the intermediate filaments of the adjacent cells are indirectly connected forming a continuous network that extends throughout the tissue.
Answer:
-During citric acid cycle or Krebs cycle, radioactive carbon will be first appear in citric acid
Explanation:
During cellular respiration, glucose is first converted into pyruvate molecules by the process of glycolysis. These pyruvate molecules go for oxidative decarboxylation, during which acetyl co-enzyme A (acetyl CoA) is formed along with removal of carbon dioxide.
The acetyl co-enzyme enters to the next step in cellular respiration or citric acid cycle or Krebs cycle. The first step of citric acid cycle is formation of citric acid by joining of acetyl CoA and oxaloacetate.
As citric acid is first molecule formed during citric acid cycle, radioactive carbon would be first appear in citric acid.
Answer: The narrator can be a witness or a reteller of events.
Explanation:
A first-person narration is a way of storytelling in which the storyteller narrates the first hand experiences. The narrator recollects or recounts the events specific for a story through own point of view introducing oneself as first person. The narrator might have witnessed of all the events had taken place in past before telling the story.
Answer:
Radiation leads to mutations that causes genetic drift and decrease fitness.
Explanation:
Radiation is responsible for changing or altering the DNA sequence within a cell.
Radiation either causes mutation or it leads to cell death.
Most of the ionizing radiation causes mutation within the deep inside of our cells which eventually leads genetic drift which means change in the frequency of the allele in a population over time.
Beneficial mutation confer advantage to the organism. But in this case, the mutation is not beneficial and decreases the fitness of the rodent organisms.