Answer:
B
Step-by-step explanation:
B is the right one because the question says that every 4 executives can go into 1 office
Answer:
The correct options are;
Therefore, City A is likely to have temperatures that remain fairly constant all year round because it has a compact interquartile range compared to that of City B
City B is likely to have more extreme temperatures with colder days in the winter and hotter days in the summer because the range is greater than that of A
Step-by-step explanation:
Here we have for City A
Maximum - Minimum = 10
Interquartile range =3
City B
Maximum - Minimum = 18.5
Interquartile range =9.5
Therefore, City A is likely to have temperatures that remain fairly constant all year round because it has a compact interquartile range compared to that of City B
City B is likely to have more extreme temperatures with colder days in the winter and hotter days in the summer because the range is greater than that of A.
Answer:

Step-by-step explanation:
given is the Differential equation in I order linear as

Take Laplace on both sides
![L(y') +4L(y) = 48L(t)\\sY(s)-y(0) +4Y(s) = 48 *\frac{1}{s^2} \\Y(s) [s+4]=\frac{48}{s^2}+9\\Y(s) = \frac{1}{s^2(s+4)}+\frac{9}{s+4}](https://tex.z-dn.net/?f=L%28y%27%29%20%2B4L%28y%29%20%3D%2048L%28t%29%5C%5CsY%28s%29-y%280%29%20%2B4Y%28s%29%20%3D%2048%20%2A%5Cfrac%7B1%7D%7Bs%5E2%7D%20%5C%5CY%28s%29%20%5Bs%2B4%5D%3D%5Cfrac%7B48%7D%7Bs%5E2%7D%2B9%5C%5CY%28s%29%20%3D%20%5Cfrac%7B1%7D%7Bs%5E2%28s%2B4%29%7D%2B%5Cfrac%7B9%7D%7Bs%2B4%7D)
Now if we take inverse we get y(t) the solution
Thus the algebraic equation would be