<span>Levels of OrganizationIn unicellular (single-celled) organisms,
the single cell performs all life functions. It functions independently.
However, multicellular (many celled) organisms have various levels of
organization within them. Individual cells may perform specific
functions and also work together for the good of the entire organism.
The cells become dependent on one another.Multicellular organisms have
the following 5 levels of organization ranging from simplest to most
complex:<span><span>LEVEL 1 - Cells<span><span>Are the basic unit of structure and function in living things. </span>May serve a specific function within the organismExamples- blood cells, nerve cells, bone cells, etc.</span></span><span>LEVEL 2 - Tissues<span>Made up of cells that are similar in structure and function and which work together to perform a specific activity Examples - blood, nervous, bone, etc. Humans have 4 basic tissues: connective, epithelial, muscle, and nerve.</span></span><span>LEVEL 3 - OrgansMade up of tissues that work together to perform a specific activityExamples - heart, brain, skin, etc.</span><span>LEVEL4 - Organ Systems <span>Groups of two or more tissues that work together to perform a specific function for the organism. Examples - circulatory system, nervous system, skeletal system, etc. The
Human body has 11 organ systems - circulatory, digestive, endocrine,
excretory (urinary), immune(lymphatic), integumentary, muscular,
nervous, reproductive, respiratory, and skeletal.</span></span><span> LEVEL 5 - Organisms <span> Entire
living things that can carry out all basic life processes. Meaning they
can take in materials, release energy from food, release wastes, grow,
respond to the environment, and reproduce. <span>Usually made up of organ systems, but an organism may be made up of only one cell such as bacteria or protist. </span>Examples - bacteria, amoeba, mushroom, sunflower, human</span></span></span></span>
Answer: synthesize a pre-rRNA 45S (35S in yeast), which matures and will form the major RNA sections of the ribosome. RNA polymerase II synthesizes precursors of mRNAs and most snRNA and microRNAs. RNA polymerase III synthesizes tRNAs, rRNA 5S and other small RNAs found in the nucleus and cytosol.
Since the genes are located in the nucleus of a cell which has being removed (but some genes are still located in the mitochondria of the ocyte) from its ocyte to fuse it with with another nucleus. Since the cell follows a maternal inheritance of gene, it would have a small head because of the presence genes in the mitochondria.
Dr. Pringle suggests that there's only very few large herbivorous species that can survive in certain area. The reason behind his claim is that according to him there will be only enough food for few large species, so there's natural limitations in the food sources, as there should be enough to support them in order for them to survive.
On the other hand, in Mpala, there's 22 large herbivorous species, which directly contradicts Dr. Pringle's hypothesis. The reason why so many large species of herbivores an survive in Mpala and always have enough food for all of them, is that they have all specialized in eating certain types of plants or parts of plants, thus they are not direct competition to one another, and there's always enough food for all of them.