Solutions are made up of two non reacting species called solute and solvent. The amount of solute in solvent is known as concentration of that solute. Concentration is often measured in Molarity. Molarity is the amount of solute dissolved in 1 dm3 of solution. Answer to your question is as follow;
Hello!
To do this, use the molar mass. This is how much a mole of an atom weighs. A mole is 6.02214076×10²³ atoms.
Molar masses of:
Se: 78.96 g/mol
Cu: 63.546 g/mol
Ba: 137.327 g/mol
Now, the element with the highest molar mass will have the fewest atoms. This is because the element weighs more, so therefore for the same amount of mass, there will be less of the element needed to reach that mass.
Therefore, 10g of Ba would have the fewest number of atoms.
Hope this helps!
<span>When atoms lose or gain electrons in chemical reactions they form?
</span>Ions
Answer:
There are 3 steps of this problem.
Explanation:
Step 1.
Wet steam at 1100 kPa expands at constant enthalpy to 101.33 kPa, where its temperature is 105°C.
Step 2.
Enthalpy of saturated liquid Haq = 781.124 J/g
Enthalpy of saturated vapour Hvap = 2779.7 J/g
Enthalpy of steam at 101.33 kPa and 105°C is H2= 2686.1 J/g
Step 3.
In constant enthalpy process, H1=H2 which means inlet enthalpy is equal to outlet enthalpy
So, H1=H2
H2= (1-x)Haq+XHvap.........1
Putting the values in 1
2686.1(J/g) = {(1-x)x 781.124(J/g)} + {X x 2779.7 (J/g)}
= 781.124 (J/g) - x781.124 (J/g) = x2779.7 (J/g)
1904.976 (J/g) = x1998.576 (J/g)
x = 1904.976 (J/g)/1998.576 (J/g)
x = 0.953
So, the quality of the wet steam is 0.953
The given concentration of boric acid = 0.0500 M
Required volume of the solution = 2 L
Molarity is the moles of solute present per liter solution. So 0.0500 M boric acid has 0.0500 mol boric acid present in 1 L solution.
Calculating the moles of 0.0500 M boric acid present in 2 L solution:

Converting moles of boric acid to mass:

Therefore, 6.183 g boric acid when dissolved and made up to 2 L with distilled water gives 0.0500 M solution.