We use the trinomial theorem to answer this question. Suppose we have a trinomial (a + b + c)ⁿ, we can determine any term to be:
[n!/(n-m)!(m-k)!k!] a^(n-m) b^(m-k) c^k
In this problem, the variables are: x=a, y=b and z=c. We already know the exponents of the variables. So, we equate this with the form of the trinomial theorem.
n - m = 2
m - k = 5
k = 10
Since we know k, we can determine m. Once we know m, we can determine n. Then, we can finally solve for the coefficient.
m - 10 = 5
m = 15
n - 15 = 2
n = 17
Therefore, the coefficient is equal to:
Coefficient = n!/(n-m)!(m-k)!k! = 17!/(17-5)!(15-10)!10! = 408,408
The Tip will be $5.30
So the total she’ll pay is $31.80
3n - 3 + 2n + 4
(3n + 2n) + (-3 + 4)
5n + 1
Answer:
Step-by-step explanation:
5/6
Answer:
The points are randomly scattered with no clear pattern
The number of points is equal to those in the scatterplot.
Step-by-step explanation:
The points in the residual plot of the line of best fit that is a good model for a scatterplot are randomly scattered with no clear pattern (like a line or a curve).
The number of points in the residual plot is always equal to those in the scatterplot.
It doesn't matter if there are about the same number of points above the x-axis as below it, in the residual plot.
The y-coordinates of the points are not the same as the points in the scatterplot.