Given ---›
y = -3
&
y = x - 0.8
So,
=> x = y + 0.8
=> x = -3 + 0.8
=> x = -2.2
Therefore, the best approximation for the solution to this system of equations is = (–2.2, –3)
Hope this is what you were looking for:)
Answer:
$45.12
Step-by-step explanation:
($0.47 /stamp)×(8 stamps/mo)×(12 mo/yr) = $45.12 /yr
You will save $45.12 per year on stamps.
Answer:
The probability that it will take more than 10 minutes for the next student to arrive at the library parking lot is 0.0821.
Step-by-step explanation:
The random variable <em>X</em> is defined as the amount of time until the next student will arrive in the library parking lot at the university.
The random variable <em>X</em> follows an Exponential distribution with mean, <em>μ</em> = 4 minutes.
The probability density function of <em>X</em> is:

The parameter of the exponential distribution is:

Compute the value of P (X > 10) as follows:


Thus, the probability that it will take more than 10 minutes for the next student to arrive at the library parking lot is 0.0821.
Answer:
The dimensions of the smallest piece that can be used are: 10 by 20 and the area is 200 square inches
Step-by-step explanation:
We have that:

Let the dimension of the paper be x and y;
Such that:


So:

Substitute 128 for Area

Make x the subject

When 1 inch margin is at top and bottom
The length becomes:


When 2 inch margin is at both sides
The width becomes:


The New Area (A) is then calculated as:

Substitute
for x

Open Brackets

Collect Like Terms



To calculate the smallest possible value of y, we have to apply calculus.
Different A with respect to y

Set

This gives:

Collect Like Terms

Multiply through by 


Divide through by 2

Take square roots of both sides



Recall that:



Recall that the new dimensions are:


So:




To double-check;
Differentiate A'




The above value is:

This means that the calculated values are at minimum.
<em>Hence, the dimensions of the smallest piece that can be used are: 10 by 20 and the area is 200 square inches</em>