Answer:
Skeletal muscle stores glycogen because it is a heavy consumer of energy.
Explanation:
Skeletal fiber contractions are based on different physiological and biochemical phenomena that happen in every cell and that need an amount of energy to occur. During muscle contraction, <em>myosin binds to the uncovered actin-binding sites, producing littles power strokes that, continuously, lead to muscle contraction</em>. To make this process possible, the muscle needs energy.
Glycogen is a very important energetic reserve polysaccharide for animals. It is stored in the liver and muscles, and when the organism needs energy it degrades glycogen into glucose, which is an available form for the metabolism. In the liver,<em> glycogen</em> is used to maintain constant levels of <em>blood glucose</em>. While in muscles, glycogen plays an important role in the glucose storage as a source of energy, needed and used only for contraction.
During muscle contraction, ATP molecules obtained from glucose are split to ADP and inorganic phosphate.
The endosymbiotic hypothesis explains that how eukaryotic cells might have evolved chloroplasts and mitochondria within their cells.
The endosymbiotic hypothesis states that the eukaryotes have developed via a procedure whereby distinct kinds of free-living prokaryotes became assimilated within the bigger prokaryotic cells and ultimately evolved into chloroplasts, mitochondria, and various other organelles.
The ph level of blood is supposed to be 7.4, so her body will make he blood more basic.
Answer:
Blood vessels in the heart dilate to increase blood pressure.
<em>Hope this helps!!!</em>
<em>
</em>
Answer:
plant: This Elodea leaf cell exemplifies a typical plant cell. It has a nucleus, and a stiff cell wall which gives the cell its box-like shape. The numerous green chloroplasts allow the cell to make its own food (by photosynthesis).
The central vacuole takes up most of the volume of the cell. It is transparent, but you can see where it's pressing the chloroplasts up against the cell wall, especially at the ends of the cell.
Like animal cells, the cytoplasm of this plant cell is bordered by a cell membrane. The membrane is so thin and transparent that you can't see it, but it is pressed against the inside of the cell wall.
animal :This human cheek cell is a good example of a typical animal cell. It has a prominent nucleus and a flexible cell membrane which gives the cell its irregular, soft-looking shape.
Like most eukaryotic cells, this cell is very large compared to prokaryotic cells. For scale, notice the pair of dark blue bacteria cells sticking to the right edge of the cheek cell. The bacteria are only a fraction of the size of the nucleus, but their tiny size is typical for bacteria.