answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nadusha1986 [10]
2 years ago
7

An upscale resort has built its circular swimming pool around a central area that contains a restaurant. The central area is a r

ight triangle with legs of 60 feet, 120 feet, and approximately 103.92 feet. The vertices of the triangle are points on the circle. The hypotenuse of the triangle is the diameter of the circle. The center of the circle is a point on the hypotenuse (longest side) of the triangle. The building permit the resort obtained requires that the resort state how much water the pool will hold so the city can manage the resort’s water rights effectively.
a.)What is the area of the largest section of the pool? Explain if you feel this area would be large enough to add a waterslide.


b.)How much water do you need to fill just the pool without the fish tank, if the average depth is 4 feet?

Mathematics
1 answer:
Elena L [17]2 years ago
6 0
The problem is modelled in the diagram below 

Question 1:
The largest area of the pool is half of the area of the circle

Area of circle = πr², where r is the radius given by 1/2 of the diameter
Area of circle = π(60)² = 11309.73355 feet

Area of half of the circle is 11309.73355/2 = 5654.866... ≈ 5654.87 feet (2dp)

Question b:

The area of the pool is the area of the circle subtracts the area of the triangle.

The area of the circle is 11309.73²

The area of the triangle is 1/2 (60×103.92) = 3117.6 feet²

The area of the pool is 11309.73 - 3117.6 = 7922.13 feet²

The volume of the pool = 7922.13 × 4 = 31688.52 feet³

Note: there isn't any information on the fish tank part so the answer above is assumed for the whole pool.

You might be interested in
The expression below is the factorization of what trinomial? -1(x+7)(x-4)
vekshin1
The answer is (-x^2 - 3x +28)
3 0
2 years ago
Read 2 more answers
How many extraneous solutions does the equation below have? StartFraction 2 m Over 2 m + 3 EndFraction minus StartFraction 2 m O
xeze [42]

Answer:

0

Step-by-step explanation:

We have the fraction \frac{2m}{2m+3} -\frac{2m}{2m-3}

Step 1. Use LCM of the fraction, (2m+3)(2m-3), to simplify the fraction:

\frac{(2m-3)(2m)-(2m+3)(2m)}{(2m+3)(2m-3)} =\frac{2m^2-6m-[2m^2+6m]}{(2m+3)(2m-3)} =\frac{2m^2-6m-2m^2-6m}{(2m+3)(2m-3)} =\frac{-12m}{(2m+3)(2m-3)}

Step 2. Equate the resulting fraction to zero and solve for m:

\frac{-12m}{(2m+3)(2m-3)} =0

-12m=0[(2m+3)(2m-3)]

-12m=0

m=\frac{0}{-12}

m=0

Step 3. Replace the value in the original equation and check if it holds:

\frac{-12m}{(2m+3)(2m-3)} =0

-12m=0

Since m=0,

-12(0)=0

0=0

Since the only solution of the equation holds, the equation bellow doesn't have any extraneous solution

5 0
2 years ago
Read 2 more answers
What is the area of a trapezoid with height 5m and bases 8m and 1m.
tankabanditka [31]
Area of a trapezoid:
A = 1/2 * ( b 1 + b 2) *h
b 1 = 8 m,  b 2 = 1 m,  h = 5 m;
A = 1/2*( 8 + 1 ) * 5 = 1/2 * 45 = 22.5
Answer: B ) 22.5 m²
8 0
2 years ago
Read 2 more answers
in which place is the digit in the number 5341 that would be changed to form 5841? how do the values of the two numbers compare
Vsevolod [243]

the hundreds place

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

4 0
2 years ago
Read 2 more answers
A geometric sequence has an initial value of 3 and a common ratio of 2. Which function(s) or formula(s) could represent this sit
olasank [31]

Answer:

The functions that represent this situation are A. f(n)=3\cdot 2^{n-1} and C. a(n)=a(n-1)\cdot 2; a(1)=3.

Step-by-step explanation:

A geometric sequence goes from one term to the next by always multiplying or dividing by the same value.

In geometric sequences, the ratio between consecutive terms is always the same. We call that ratio the common ratio.

This is the explicit formula for the geometric sequence whose first term is <em>k</em> and common ratio is<em> r:</em>

<em>                                                 </em>a(n)=k\cdot r^{n-1}<em />

This is the recursive formula of that sequence:

                                                 a(1)=k\\\\a(n)=a(n-1)\cdot r

We know that the first term is <em>k</em> = 3 and the common ratio is <em>r = </em>2. Therefore,

The explicit formula is f(n)=3\cdot 2^{n-1} and the recursive formula is a(n)=a(n-1)\cdot 2; a(1)=3.

6 0
2 years ago
Other questions:
  • Tape travels through a tape player at a speed 0.048 meters per seconds. How long is tape that can play for 30 minutes
    13·1 answer
  • An onion farmer is hiring workers to help harvest the onions. He knows that the number of days it will take to harvest the onion
    5·2 answers
  • Which of the following is being constructed in the image?
    12·2 answers
  • For every $12 Maria earns babysitting, she donates $2 to the local pet shelter. Last week, Maria earned a total of $60. Of the $
    15·1 answer
  • A town has a population of 5000 and grows at 2% every year. What will be the population after 5 years, to the nearest whole numb
    13·2 answers
  • Suppose that W and X are point on the number line. If WX= 10 and X lies at -7, where could W be located? If there is more than o
    7·1 answer
  • MISSY SAYS THAT 5/6 EQUALS 6 DIVIED 5 IS SHE CORRECT? WHY ORWHY NOT.
    11·2 answers
  • How will the solution of the system y &gt; 2x + Two-thirds and y &lt; 2x + One-third change if the inequality sign on both inequ
    15·2 answers
  • The segments represent roads in a town, measured in miles.
    12·2 answers
  • Please help I’ll give brainliest
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!