Answer:
250.50 - 35m = 300 - 45.25m
Step-by-step explanation:
Whenever an equation asks for when it will take x (or m in this case) amount of things or time you should know that there will be 2 different equations that have to equal each other
The equation will be 250.50 - 35m = 300 - 45.25m
The 35m is being subtracted from 250.50 because they are losing money each time they spend. This also applies to 45.25m
Also 35m and 45.25m are variables because it says they spend that much money each month. They don't specify how many months, so we have to put a variable after it.
Answer:
a) <u>0.4647</u>
b) <u>24.6 secs</u>
Step-by-step explanation:
Let T be interval between two successive barges
t(t) = λe^λt where t > 0
The mean of the exponential
E(T) = 1/λ
E(T) = 8
1/λ = 8
λ = 1/8
∴ t(t) = 1/8×e^-t/8 [ t > 0]
Now the probability we need
p[T<5] = ₀∫⁵ t(t) dt
=₀∫⁵ 1/8×e^-t/8 dt
= 1/8 ₀∫⁵ e^-t/8 dt
= 1/8 [ (e^-t/8) / -1/8 ]₀⁵
= - [ e^-t/8]₀⁵
= - [ e^-5/8 - 1 ]
= 1 - e^-5/8 = <u>0.4647</u>
Therefore the probability that the time interval between two successive barges is less than 5 minutes is <u>0.4647</u>
<u></u>
b)
Now we find t such that;
p[T>t] = 0.95
so
t_∫¹⁰ t(x) dx = 0.95
t_∫¹⁰ 1/8×e^-x/8 = 0.95
1/8 t_∫¹⁰ e^-x/8 dx = 0.95
1/8 [( e^-x/8 ) / - 1/8 ]¹⁰_t = 0.95
- [ e^-x/8]¹⁰_t = 0.96
- [ 0 - e^-t/8 ] = 0.95
e^-t/8 = 0.95
take log of both sides
log (e^-t/8) = log (0.95)
-t/8 = In(0.95)
-t/8 = -0.0513
t = 8 × 0.0513
t = 0.4104 (min)
so we convert to seconds
t = 0.4104 × 60
t = <u>24.6 secs</u>
Therefore the time interval t such that we can be 95% sure that the time interval between two successive barges will be greater than t is <u>24.6 secs</u>
Part 1
Rule of thumb for month rent: Rent ≤ 28% of monthly gross income
Then,
Month gross income = $62,112/12 = $5,176
Affordable rent = 0.28*5176 = $1,449.28
Rounding to nearest dollar;
Affordable rent = $1,449.
The correct answer is C.
Part 2
Monthly rent = $1240
Security deposit = 80% of rent = 0.8*1240 = $992
Amount to be paid = 1240*2 + 992 = $3472
The correct answer is B.
The normal vectors to the two planes are (3, 3, 2) and (2, -3, 2). The cross product of these will be the direction vector of the line of intersection, (12, -2, -15).
Using x=0, we can find a point on this line by solving the simultaneous equations that remain:
... 3y +2z = -2
... -3y +2z = 2
Adding these, we get
... 4z = 0
... z = 0
so the point we're looking for is (x, y, z) = (0, -2/3, 0). This gives rise to the parametric equations ...
- x = 12t
- y = -2/3 -2t
- z = -15t
By letting t=2/3, we can find a point on the line that has integer coefficients. That will be (x, y, z) = (8, -2, -10).
Then our parametric equations can be written as
- x = 8 +12t
- y = -2 -2t
- z = -10 -15t