1) You included neihter what Ramesh says nor the statements, then I can you tell some facts about the pattern.
2) The sequence is: 2401, 343, 49, 7, and 1.
3) The first term is 2401
4) The sequence is a decreasing geometric one.
5) The ratio is found dividing two consecutive terms (the second by the first, or the third by the second, or the fourth by the third, or the fifth by fourth):
1/7 = 7 / 49 = 49 / 343 = 343 / 2401.
So, the ratio is 1/7
6) The sum of that sequence is 2401 + 343 + 49 + 7 + 1 = 2801
(a) 0.059582148 probability of exactly 3 defective out of 20
(b) 0.98598125 probability that at least 5 need to be tested to find 2 defective.
(a) For exactly 3 defective computers, we need to find the calculate the probability of 3 defective computers with 17 good computers, and then multiply by the number of ways we could arrange those computers. So
0.05^3 * (1 - 0.05)^(20-3) * 20! / (3!(20-3)!)
= 0.05^3 * 0.95^17 * 20! / (3!17!)
= 0.05^3 * 0.95^17 * 20*19*18*17! / (3!17!)
= 0.05^3 * 0.95^17 * 20*19*18 / (1*2*3)
= 0.05^3 * 0.95^17 * 20*19*(2*3*3) / (2*3)
= 0.05^3 * 0.95^17 * 20*19*3
= 0.000125* 0.418120335 * 1140
= 0.059582148
(b) For this problem, let's recast the problem into "What's the probability of having only 0 or 1 defective computers out of 4?" After all, if at most 1 defective computers have been found, then a fifth computer would need to be tested in order to attempt to find another defective computer. So the probability of getting 0 defective computers out of 4 is (1-0.05)^4 = 0.95^4 = 0.81450625.
The probability of getting exactly 1 defective computer out of 4 is 0.05*(1-0.05)^3*4!/(1!(4-1)!)
= 0.05*0.95^3*24/(1!3!)
= 0.05*0.857375*24/6
= 0.171475
So the probability of getting only 0 or 1 defective computers out of the 1st 4 is 0.81450625 + 0.171475 = 0.98598125 which is also the probability that at least 5 computers need to be tested.
Answer:
Point B
Step-by-step explanation:
a point of tangency on a circle is where an outside line touches the outer circle at one point (the outside line touching it only once is what makes that line a tangent) so in this case the point of tangency is Point B
Please mark as Brainliest :)
The is Answer:
82
Explanation:
We observe that difference between first and second terms <span>=12−5=7</span>
Similarly difference between second and third terms <span>=19−12=7</span>
It shows that the given sequence of numbers is an arithmetic progression with common difference equal to 7.
We know that <span>nth</span> term of an AP whose first term is <span>a1</span> and whose common difference is d is given by
<span><span>an</span>=<span>a1</span>+<span>(n–1)</span>d</span>
To find the <span>12th</span> term, insert given values in the general expression
<span><span>a12</span>=5+<span>(12–1)</span>7</span>
<span><span>a12</span>=5+<span>(11)</span>7=5+77=<span>82</span></span>