Y = 3.5x + 6
Shows the 6 inital fee plus the 3.50 for each pound
Answer:
0; 10; 20
Step-by-step explanation:
x is the independent variable
y is the dependent variable
y is dependent on x
a) For what value of the independent variable will the value of the function be equal to −6
y=0.3x−6
-6 = 0.3x-6
0=0.3x
x = 0
Therefore, if the independent variable is 0, the value of the function will be -6.
b) For what value of the independent variable will the value of the function be equal to −3
y=0.3x−6
-3 = 0.3x-6
0.3x = -3+6
0.3x = 3
x = 3/0.3
x = 10
Therefore, if the independent variable is 10, the value of the function will be -3.
c) For what value of the independent variable will the value of the function be equal to 0.
y=0.3x−6
0=0.3x-6
6 = 0.3x
x = 6/0.3
x = 20
Therefore, if the independent variable is 20, the value of the function will be 0.
Answer:
Given that 1/3 of a box is 6 dollars, we can say that per dollar is 1/18 of a box. If you have 4 dollars, this would mean that you can buy 4/18 of a box to 2/9 of a box. Hope this answers your question. Have a great day ahead!
Step-by-step explanation:
Answer:
t = 137.9 years
Step-by-step explanation:
Hi, to answer this question we have to apply an exponential growth function:
A = P (1 + r) t
Where:
p = original population
r = growing rate (decimal form)
t= years
A = population after t years
Replacing with the values given:
A = 6,250 (1 + 3.75/100)^t
A = 6,250 (1 + 0.0375)^t
A = 6,250 (1.0375)^t
1915-1890 = 25 years passed (t)
A = 6,250 (1.0375)^25
A = 15,689
1940-1890 = 50 years passed (t)
A = 6,250 (1.0375)^50
A = 39,381
- When will the population reach 1,000,000?. We have to subtitute A=1000000 and solve for t.
1,000,000= 6,250 (1.0375)^t
1,000,000/ 6,250 =(1.0375)^t
160 = 1.0375^t
log 160 = log 1.0375^t
log 160 = (t ) log 1.0375
log160 / log 1.0375= t
t = 137.9 years
Answer:
A. Increase by 2
Step-by-step explanation:
Given that a fitted multiple regression equation is

This is a multiple regression line with dependent variable y and independent variables x1, x2, x3 and x4
The coefficients of independent variables represent the slope.
In other words the coefficients represent the rate of change of y when xi is changed by 1 unit.
Given that x3 and x4 remain unchanged and x1 increases by 2 and x2 by 2 units
Since slope of x1 is 5, we find for one unit change in x1 we can have 5 units change in y
i.e. for 2 units change in x1, we expect 10 units change in Y
Similarly for 2 units change in x2, we expect -2(4) units change in Y
Put together we have
change in y
Since positive 2, there is an increase by 2
A. Increase by 2