answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
EleoNora [17]
1 year ago
10

The slope-intercept form of a linear equation is y = mx + b, where x and y are coordinates of an ordered pair, m is the slope of

the line, and b is where the line crosses the y-axis. Which is an equivalent equation solved for the slope, m? m = yx + b m = m = – b m = y –
Mathematics
2 answers:
rjkz [21]1 year ago
8 0

we know that

The slope-intercept form of a linear equation is

y=mx+b

where

m is the slope

b is where the line crosses the y-axis

Solve the equation for the slope

y=mx+b

Subtract b both sides

y-b=mx+b-b

y-b=mx

Divide by x both sides

(y-b)/x=mx/x

m=(y-b)/x

therefore

the answer is

m=(y-b)/x

Serjik [45]1 year ago
4 0
Y = mx + b
y - b = mx
(y - b) / x = m

so its : m = (y - b) / x.....or m = (y/x) - (b/x)
You might be interested in
If θ=0rad at t=0s, what is the blade's angular position at t=20s
babunello [35]
The attached figure represents the relation between ω (rpm) and t (seconds)
To find the blade's angular position in radians ⇒ ω will be converted from (rpm) to (rad/s)
              ω = 250 (rpm) = 250 * (2π/60) = (25/3)π    rad/s
              ω = 100 (rpm) = 100 * (2π/60) = (10/3)π    rad/s

and from the figure it is clear that the operation is at constant speed but with variable levels
            ⇒   ω = dθ/dt   ⇒   dθ = ω dt

            ∴    θ = ∫₀²⁰  ω dt  
 
while ω is not fixed from (t = 0) to (t =20)
the integral will divided to 3 integrals as follow;
       ω = 0                                          from t = 0  to t = 5
       ω = 250 (rpm) = (25/3)π            from t = 5   to t = 15
       ω = 100 (rpm) = (10/3)π            from t = 15 to t = 20

∴ θ = ∫₀⁵  (0) dt   + ∫₅¹⁵  (25/3)π dt + ∫₁₅²⁰  (10/3)π dt
     
the first integral = 0
the second integral = (25/3)π t = (25/3)π (15-5) = (250/3)π
the third integral = (10/3)π t = (25/3)π (20-15) = (50/3)π

∴ θ = 0 + (250/3)π + (50/3)π = 100 π

while the complete revolution = 2π
so instantaneously at t = 20
∴ θ = 100 π - 50 * 2 π = 0 rad

Which mean:
the blade will be at zero position making no of revolution = (100π)/(2π) = 50
















3 0
2 years ago
Jason grew from 36 inches to 40 inches in 1 year. By percent did his growth increase? Round your answer off to the nearest tenth
IrinaVladis [17]

Answer:

33%

Step-by-step explanation:

7 0
1 year ago
A sample of bacteria is being eradicated by an experimental procedure. The population is following a pattern of exponential deca
77julia77 [94]

Answer:

There will be 50 bacteria remaining after 28 minutes.

Step-by-step explanation:

The exponential decay equation is

N=N_0e^{-rt}

N= Number of bacteria after t minutes.

N_0 = Initial number of bacteria when t=0.

r= Rate of decay per minute

t= time is in minute.

The sample begins with 500 bacteria and after 11 minutes there are 200 bacteria.

N=200

N_0 = 500

t=11 minutes

r=?

N=N_0e^{-rt}

\therefore 200=500e^{-11r}

\Rightarrow e^{-11r}=\frac{200}{500}

Taking ln both sides

\Rightarrow ln| e^{-11r}|=ln|\frac{2}{5}|

\Rightarrow {-11r}=ln|\frac{2}{5}|

\Rightarrow r}=\frac{ln|\frac{2}{5}|}{-11}

To find the time when there will be 50 bacteria remaining, we plug N=50, N_0= 500 and  r}=\frac{ln|\frac{2}{5}|}{-11} in exponential decay equation.

50=500e^{-\frac{ln|\frac25|}{-11}.t}

\Rightarrow \frac{50}{500}=e^{\frac{ln|\frac25|}{11}.t}

Taking ln both sides

\Rightarrow ln|\frac{50}{500}|=ln|e^{\frac{ln|\frac25|}{11}.t}|

\Rightarrow ln|\frac{1}{10}|={\frac{ln|\frac25|}{11}.t}

\Rightarrow t= \frac{ln|\frac{1}{10}|}{\frac{ln|\frac25|}{11}.}

\Rightarrow t= \frac{11\times ln|\frac{1}{10}|}{{ln|\frac25|}}

\Rightarrow t\approx 28 minutes

There will be 50 bacteria remaining after 28 minutes.

3 0
2 years ago
An element with mass 640 grams decays by 7.3% per minute. How much of the element is remaining after 8 minutes, to the nearest 1
Alborosie

Answer:

349.0 grams to nearest tenth

Step-by-step explanation:

After each minute there will be  (100- 7.3) = 92.7 %  ( or 0.927) of the element left.

Therefore after 8 minutes amount left = 640*0.927^8

= 349.0 grams   answer

7 0
1 year ago
Read 2 more answers
Bertie needs 2 1/3 cups of flour for each pan of biscuits she bakes. She wants to bake 3 1/2 pans of biscuits.
o-na [289]
You're going to multiply how much she need by how many she wants to make: 2 1/3x3 1/2. First make them improper fractions: 7/3x7/2. Then multiply the numerators together and the denominaters together: 49/6. Simplify: 8 1/6. She needs 8 1/6 cups of flour :)
6 0
1 year ago
Other questions:
  • Find the m∠BCA, if m∠DCE = 70° and m∠EDC = 50°.<br><br> 50°<br> 60°<br> 70°<br> 80°
    8·2 answers
  • What is the unit rate for 500.48 meters in 27.2 hours?
    7·1 answer
  • Which best describes the transformation that occurs from the graph of f(x) = x2 to g(x) = (x – 2)2 + 3?
    12·2 answers
  • ΔABC and ΔXYZ are similar triangles. If BC = x + 7, AC = x + 6, YZ = 4 − x, and XZ = 3 − x, find the value of x.
    13·2 answers
  • A geometry teacher asked Radric to define "parallel lines." Radric said that parallel lines are lines in a plane that do not hav
    14·2 answers
  • Kathi and Robert Hawn had a pottery stand at the annual Skippack Craft Fair. They sold some of their pottery at the original pri
    5·1 answer
  • Daniel and his children went into a grocery store and he bought $10.15 worth of apples and bananas. Each apple costs $1.75 and e
    6·1 answer
  • Select all of the potential solution(s) of the equation 2log5x = log54?
    13·2 answers
  • What is the true solution to l n 20 + l n 5 = 2 l n x x = 5 x = 10 x = 50 x = 100
    11·2 answers
  • Whch expression could be used to change 8 kilometers per hour to meters per minute
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!