4) is correct
This is because water is polar and it will mix with a polar solvent. A good rule for remembering the behavior of non-polar and polar compounds when it comes to being miscible is that "like dissolves like."
Answer:
A). The complementary shapes of an enzyme and a substrate.
Explanation:
The Lock-and-key mechanism was proposed by Emil Fischer for the first time and characterized as the metaphor which helps in elucidating the specificity of the enzymatic reactions. In this metaphor, the lock is described as the enzyme while 'key' is characterized as the substrate which the enzyme acts upon. If the key is not appropriately sized, it will not fit into the active site i.e. the keyhole of the lock or enzyme and reaction will not take place. Thus, <u>option A</u> is the correct answer.
The chemical reaction would be written as
2 AsF3<span> + 3 CCl4 = 2 AsCl3 + 3 CCl2F2
</span>
We use the given amounts of the reactants to first find the limiting reactant. Then use the amount of the limiting reactant to proceed to further calculations.
150 g AsF3 ( 1 mol / 131.92 g) = 1.14 mol AsF3
180 g CCl4 (1 mol / 153.82 g) = 1.17 mol CCl4
Therefore, the limiting reactant would be CCl4 since it would be consumed completely. The theoretical yield would be:
1.17 mol CCl4 ( 3 mol CCl2F2 / 3 mol CCl4 ) = 1.17 mol CCl2F2
The Lewis structure of
Diimide (N₂H₂) is shown below.
In this molecule two Nitrogen atoms attached to each other through a
double bond are further attached to one one Hydrogen atom. Also, each Nitrogen atom carries one
non-binding electron pair (
Lone Pair) (Highlighted RED).
Result: Option-C (<span>each nitrogen has one nonbinding electron pair) is the correct answer.</span>