Answer:
104.84 moles
Explanation:
Given data:
Moles of Boron produced = ?
Mass of B₂O₃ = 3650 g
Solution:
Chemical equation:
6K + B₂O₃ → 3K₂O + 2B
Number of moles of B₂O₃:
Number of moles = mass/ molar mass
Number of moles = 3650 g/ 69.63 g/mol
Number of moles = 52.42 mol
Now we will compare the moles of B₂O₃ with B from balance chemical equation:
B₂O₃ : B
1 : 2
52.42 : 2×52.42 = 104.84
Thus from 3650 g of B₂O₃ 104.84 moles of boron will produced.
Physical properties of a bag of microwaveable popcorn are the mass of it, the color of it, the size of it, and the weight of it. Two chemical properties of a bag of microwavable popcorn are it changed from seeds to popcorn and it popped.
<span>2 KClO3(s) → 3 O2(g) + 2 KCl(s)
</span><span>Note: MnO2 (Manganese Dioxide) is not part of the reaction. A catalyst lowers the activation energy and increases both forward and reverse reactions at equal rates.
</span>
molar mass of KClO3 = 122.5
Moles of KClO3 = 3.45 / 122.55 = 0.028
Moles of O2 produce =

= 0.042 moles
molar mass of O2 = 32
so, mass of O2 = 32 x 0.042 = 1.35 g
Did you intend to write [PdCl4]^-2 instead of PdCl2-4? If so, then:
<span>Cathode: [PdCl4]^-2(aq) + 2e- ======⇒ Pd(s) + 4Cl-(aq) </span>
<span>Anode: Cd(s) ==⇒ Cd+2(aq) + 2e-</span>
Answer:
The average atomic mass of bromine is 79.9 amu.
Explanation:
Given data:
Percentage of Br⁷⁹ = 55%
Percentage of Br⁸¹ = 45%
Average atomic mass of bromine = ?
Formula:
Average atomic mass = [mass of isotope× its abundance] + [mass of isotope× its abundance] +...[ ] / 100
Now we will put the values in formula.
Average atomic mass = [55 × 79] + [81 ×45] / 100
Average atomic mass = 4345 + 3645 / 100
Average atomic mass = 7990 / 100
Average atomic mass = 79.9 amu
The average atomic mass of bromine is 79.9 amu.