Answer:
CuSO4 + Fe -> FeSO4 + Cu
Explanation:
This reaction is a classic example of a redox reaction. I won't go in too deep, but the basic thing is that electrons from the Fe atom go to the Cu2+ ion. Therefore, Fe becomes an ion, and Cu - an electroneutral atom:
Fe + Cu2+ -> Fe2+ + Cu.
Silver is not a very reactive metal and it does not give up its electrons to Cu.
Answer: 53.3
Explanation:
V2=(T2 x P1 x V1)/(T1 x P2)
(320x50x80)/(300x80)
53.3
The oxidation number of iodine is 5 in Mg(IO3)2 which can be calculated as
Mg(IO3)2
MgI2O6
As we know that
Mg has +2
O has -2
So,
(+2) + 2I + 6 (-2)=0
2 + 2I - 12 =0
10+ 2I =0
10 = 2I
I =5
Full Question:
A flask containing 420 Ml of 0.450 M HBr was accidentally knocked to the floor.?
How many grams of K2CO3 would you need to put on the spill to neutralize the acid according to the following equation?
2HBr(aq)+K2CO3(aq) ---> 2KBr(aq) + CO1(g) + H2O(l)
Answer:
13.1 g K2CO3 required to neutralize spill
Explanation:
2HBr(aq) + K2CO3(aq) → 2KBr(aq) + CO2(g) + H2O(l)
Number of moles = Volume * Molar Concentration
moles HBr= 0.42L x .45 M= 0.189 moles HBr
From the stoichiometry of the reaction;
1 mole of K2CO3 reacts with 2 moles of HBr
1 mole = 2 mole
x mole = 0.189
x = 0.189 / 2 = 0.0945 moles
Mass = Number of moles * Molar mass
Mass = 0.0945 * 138.21 = 13.1 g