Carbon has the highest ionization energy as its energy 1086KJ\Mol and the rest are between 500 and 800.
Explanation:
A volatile substance is defined as the substance which can easily evaporate into the atmosphere due to weak intermolecular forces present within its molecules.
Whereas a flammable substance is defined as a substance which is able to catch fire easily when it comes in contact with flame.
Hence, when we heat a flammable or volatile solvent for a recrystallization then it should be kept in mind that should heat the solvent in a stoppered flask to keep vapor away from any open flames so that it won't catch fire.
And, you should ensure that no one else is using an open flame near your experiment.
Thus, we can conclude that following statements are correct:
- You should heat the solvent in a stoppered flask to keep vapor away from any open flames.
- You should ensure that no one else is using an open flame near your experiment.
Lets assume the gas is acting Ideally, then According to Ideal Gas Equation the density is given as,
d = P M / R T ------- (1)
Where;
P = Pressure = 1.03 atm
M = Molar Mass = 146.06 g/mol
R = Gas Constant = 0.08206 atm.L.mol⁻¹.K⁻¹
T = Temperature = 297 K
Putting Values in eq. 1,
d = (1.03 atm × 146.06 g/mol) ÷ (0.08206 atm.L.mol⁻¹.K⁻¹ × 297 K)
density = 6.17 g/L
Answer:
C3H6O2
Explanation:
To find the empirical formula of the compound, we divide the amount in moles of each of the elements by the amount in mole of the element with the smallest number of mole. In this question, the element with the smallest number of moles is oxygen with 1.36 mole. Hence, we divide the number of moles of each element by this.
H = 4.10/1.36 = 3
O = 1.36/1.36 = 1
C = 2.05/1.36 = 1.5
We then multiply through by 2 to yield the compound with the empirical formula C3H6O2
<u>Answer:</u> The chemical equation is written below.
<u>Explanation:</u>
Combustion reaction is defined as the chemical reaction in which a hydrocarbon reacts with oxygen gas to produce carbon dioxide gas and water molecule.

The chemical equation for the combustion of ethyl chloride follows:

We are given:
When 4 moles of ethyl chloride is burnt, 5145 kJ of heat is released.
For an endothermic reaction, heat is getting absorbed during a chemical reaction and is written on the reactant side.

For an exothermic reaction, heat is getting released during a chemical reaction and is written on the product side

So, the chemical equation follows:

Hence, the chemical equation is written above.