Volume of each solution : 60 ml 20% and 40 ml 45%
<h3>Further explanation</h3>
Given
20% and 45% acid
100 ml of 30% acid
Required
Volume of each solution
Solution
Molarity from 2 solutions :
Vm Mm = V₁. M₁ + V₂. M₂
m = mixed solution
V = volume
M = molarity
V₁ = x ml
V₂ = (100 - x) ml
Input the value :
100 . 0.3 = x . 0.2 + (100-x) . 0.45
30 = 0.2x+45-0.45x
0.25x=15
x= 60 ml
V₁ = 60 ml
V₂ = 100 - 60 = 40 ml
Answer:
The age of ship is 1900 years.
Explanation:
The half life period of carbon - 14 is 5730 years
Ship have 67 % of the concentration of Carbon-14
And the ship lost (100- 67 = 33%) 33% of carbon - 14.
Therefore,
The age of ship = lost percentage X half life period of carbon -14

Therefore, The age of ship is 1900 years.
On temperature 25°C (298,15K) and pressure of 1 atm each gas has same amount of substance:
n(gas) = p·V ÷ R·T = 1 atm · 20L ÷ <span>0,082 L</span>·<span>atm/K</span>·<span>mol </span>· 298,15 K
n(gas) = 0,82 mol.
1) m(He) = 0,82 mol · 4 g/mol = 3,28 g.
d(He) = 10 g + 3,28 g ÷ 20 L = 0,664 g/L.
2) m(Ne) = 0,82 mol · 20,17 g/mol = 16,53 g.
d(Ne) = 26,53 g ÷ 20 L = 1,27 g/L.
3) m(CO) = 0,82 mol ·28 g/mol = 22,96 g.
d(CO) = 32,96 g ÷ 20L = 1,648 g/L.
4) m(NO) = 0,82 mol ·30 g/mol = 24,6 g.
d(NO) = 34,6 g ÷ 20 L = 1,73 g/L.
Answer:
H+/H3O , H2O
Explanation:
The ability to be a proton donor is the Bronsted-Lowry definition of acids. The Lewis definition of an acid is an electron pair acceptor, which covers molecules liKE BF3
The ability to accept a pair of electrons is what is common to all acids, not the ability to be a proton donor.
All acid solutions contain hydronium ions (H3O+), hydroxide ions (OH-) and water molecules. Each different acid solution will then have an anion that is exclusive to that acid. For example, hydrochloric acid solution will contain all of the above and chloride ions (Cl-).
All acids contain the acidic substance dissolved in water. Water naturally dissociates to a small amount, creating hydronium and hydroxide ions. But most of the water remains as water molecules.
Then when we add an acid, like HCl, the oxygen on the water attracts the hydrogen from the HCl. The electrons in the covalent bond remain with the chlorine, giving it a negative charge and thus it becomes the chloride ion (Cl-). The hydrogen now has a positive charge and as said before, is attracted to the water (specifically the lone pair of electrons on the oxygen) to create hydronium ions.
This creates extra hydronium ions, making the solution acidic. But remember, there are still water molecules, hydroxide ions and the negative ion all in solution for all acids.