MH₂CO₃: (1g×2) + 12g + (16g×3) = 62 g/mol
1 mol --- 62g
0,8 mol -- X
X = 0,8×62
X = 49,6g
Answer:
pHe = 3.2 × 10⁻³ atm
pNe = 2.5 × 10⁻³ atm
P = 5.7 × 10⁻³ atm
Explanation:
Given data
Volume = 1.00 L
Temperature = 25°C + 273 = 298 K
mHe = 0.52 mg = 0.52 × 10⁻³ g
mNe = 2.05 mg = 2.05 × 10⁻³ g
The molar mass of He is 4.00 g/mol. The moles of He are:
0.52 × 10⁻³ g × (1 mol / 4.00 g) = 1.3 × 10⁻⁴ mol
We can find the partial pressure of He using the ideal gas equation.
P × V = n × R × T
P × 1.00 L = 1.3 × 10⁻⁴ mol × (0.082 atm.L/mol.K) × 298 K
P = 3.2 × 10⁻³ atm
The molar mass of Ne is 20.18 g/mol. The moles of Ne are:
2.05 × 10⁻³ g × (1 mol / 20.18 g) = 1.02 × 10⁻⁴ mol
We can find the partial pressure of Ne using the ideal gas equation.
P × V = n × R × T
P × 1.00 L = 1.02 × 10⁻⁴ mol × (0.082 atm.L/mol.K) × 298 K
P = 2.5 × 10⁻³ atm
The total pressure is the sum of the partial pressures.
P = 3.2 × 10⁻³ atm + 2.5 × 10⁻³ atm = 5.7 × 10⁻³ atm
4) fission is a nuclear reaction where the nucleus of a reactant breaks apart
<h3><u>Answer</u>;</h3>
= 4.68 K
<h3><u>Explanation</u>;</h3>
According to the combined gas law;
P1V1/T1 = P2V2/T2
Given; P1 = 125 Psi
V1 = 75 L
T1 = 288 K
P2 = 25 PSI
V2 =6.1 L
Therefore;
T2 = P2V2T1/P1V1
= (25×6.1 ×288)/(125×75)
= 4.6848
= 4.68 K