answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lukranit [14]
2 years ago
15

How many moles of AgNO3 must react to form 0.854 mol Ag?

Chemistry
2 answers:
kipiarov [429]2 years ago
5 0
The answer:
<span>The equation of its dissolution in water is: AgNO3 → Ag + (aq)  +  NO3- (aq)

and     </span>AgNO3 →   Ag + (aq)  +  NO3- (aq)
          1 mol          1mol                1mol 
             ?  --------   0.854mo
so for finding the value, it is sufficients to complute 1 x 0.854 mol =0.854 mol
so,  0.854 mol is required for the reaction to form 0.854 mol of Ag

steposvetlana [31]2 years ago
3 0

0.427 mol Cu

i just took the test on so i know this is right

You might be interested in
PLEASE HELP!!!!!!
Bas_tet [7]
The reaction that is a double displacement reaction is the final one. Between Pb(NO3)2 and HCl.
6 0
2 years ago
Read 2 more answers
 A reaction container holds 5.77 g of P4 and 5.77 g of O2.
Dvinal [7]

Answer:

a) O2 is the limiting reactant

b) 5.75 grams P4O10

c) 5.79 grams P4O6

Explanation:

Step 1: Data given

Mass of P4 = 5.77 grams

Mass of O2 = 5.77 grams

Molar mass of P4 = 123.90 g/mol

Molar mass O2 = 32.0 g/mol

Step 2: The balanced equation

P4 + 3O2 → P4O6

Step 3: Calculate moles of P4

Moles P4 = mass P4 / molar mass P4

Moles P4 = 5.77 grams / 123.90 g/mol

Moles P4 = 0.0466 moles

Step 4: Calculate moles O2

Moles O2 = mass O2 / molar mass O2

Moles O2 = 5.77 grams / 32.0 g/mol

Moles O2 = 0.1803 moles

Step 5: Calculate limiting reactant

P4 is the limiting reactant in this reaction. It will completely be consumed (0.0466 moles). O2 is in excess, there will react 3*0.0466 = 0.1398 moles

There will remain 0.1803 - 0.1398 = 0.0405 moles O2

Step 6: Calculate the amount of P4O6

For 1 mol P4 we'll have 1 mol P4O6

For 0.0466 moles P4 we'll have 0.0466 moles P4O6

Step 7: The balanced equatio

P4O6 + 2O2 → P4O10

We have 0.0466 moles P4O6 and 0.0405 moles O2

Step 8: Calculate the limiting reactant

For 1 mol P4O6 we need 2 moles O2 to produce 1 mol P4O10

O2 is the limiting reactant. It will completely be consumed (0.0405 moles)

P4O6 is in excess. There will react 0.0405/2 = 0.02025 moles

There will remain 0.0466 - 0.02025 = 0.02635 moles P4O6

This is 0.02635 * 219.88 g/mol = 5.79 grams P4O6

Step 9: Calculate moles and mass of P4O10

For 1 mol P4O6 we need 2 moles O2 to produce 1 mol P4O10

For 0.0405 moles O2 we'll have 0.02025 moles P4O10

This is 0.02025 * 283.89 g/mol = 5.75 grams P4O10

3 0
2 years ago
Will is learning about a new kind of plastic used to make models. He learns that infrared light is absorbed by the plastic, X-ra
tamaranim1 [39]

Answer:

no it dosen't matter

Explanation:

because it absorbed the light so it had to damage it.

8 0
2 years ago
Read 2 more answers
What is the name of Pb(NO3)2? Explain how you determined the bond type and the steps you used to determine the naming convention
Elena L [17]

Answer: Lead(II) nitrate but idk the rest

Explanation:

5 0
2 years ago
Describe how you would prepare exactly 100 mL of 0.109 M picolinate buffer, pH 5.61. Possible starting materials are pure picoli
Pepsi [2]

Answer:

1.342g of picolinic acid and 6.743mL of 1.0M NaOH diluting the mixture to 100.0mL

Explanation:

<em>The pKa of the picolinic acid is 5.4.</em>

Using Henderson-Hasselbalch formula for picolinic-picolinate buffer:

pH = pKa + log [Picolinate] / [Picolinic]

<em>Where [] could be taken as moles of each species</em>

<em />

5.61 = 5.4 + log [Picolinate] / [Picolinic]

0.21 = log [Picolinate] / [Picolinic]

1.62181 = [Picolinate] / [Picolinic] <em>(1)</em>

<em></em>

Now, both picolinate and picolinic acid will be:

0.100L * (0.109mol / L) =

0.0109 moles = [Picolinate] + [Picolinic] <em>(2)</em>

<em></em>

First, as we will start with picolinic acid, we need add:

0.0109 moles picolinic acid * (123.10g/mol) = 1.342g of picolinic acid

Now, replacing (2) in (1):

1.62181 = 0.0109 moles - [Picolinic] / [Picolinic]

1.62181 [Picolinic] = 0.0109 moles - [Picolinic]

2.62181 [Picolinic] = 0.0109 moles

[Picolinic] = 4.157x10⁻³ moles

And:

[Picolinate] = 0.0109 - 4.157x10⁻³ moles =

<h3>6.743x10⁻³ moles</h3><h3 />

To obtain these moles of picolinate ion we need to make the reaction of the picolinic acid with NaOH:

Picolinic acid + NaOH → Picolinate + Water

<em>That means to obtain 6.743x10⁻³ moles of picolinate ion we need to add 6.743x10⁻³ moles of NaOH</em>

<em />

6.743x10⁻³ moles of NaOH that is 1.0M are, in mL:

6.743x10⁻³ moles * (1L / 1mol) = 6.743x10⁻³L * 1000 =

<h3>6.743mL of the 1.0M NaOH must be added</h3><h3 />

Thus, we obtain the desire moles of picolinate and picolinic acid to obtain the buffer we want, the last step is:

<h3>Dilute the mixture to 100mL, the volume we need to prepare</h3>
3 0
2 years ago
Other questions:
  • Rank in increasing polarity the carbon-nitrogen single, double, and triple bonds. not enough information to compare. triple &lt;
    14·1 answer
  • Write a balanced half-reaction describing the oxidation of gaseous dihydrogen to aqueous hydrogen cations.
    12·2 answers
  • What are the missing coefficients for the skeleton equation below? cr(s) + fe(no3)2(aq) → fe(s) + cr(no3)3(aq)?
    9·1 answer
  • Justin is growing a garden and has many different types of liquids with which he could water his plants. He has water, coffee, m
    11·2 answers
  • A 0.4657 g sample of a pure soluble bromide compound is dissolved in water, and all of the bromide ion is precipitated as AgBr b
    13·1 answer
  • How many hydrogen atoms are in 0.1488 g of phosphoric acid, H3PO4?
    14·2 answers
  • What is the pH of a solution prepared by mixing 50.00 mL of 0.10 M methylamine, CH3NH2, with 20.00 mL of 0.10 M methylammonium c
    6·1 answer
  • Sample (3.585g) contains 1.388g of C, 0.345g of H, 1.850g of O and its molar mass is 62g. What is the molecular formula of this
    5·1 answer
  • A student adds 10.00 mL of a 2.0 M nitric acid solution to a 100.00 mL volumetric flask. Next, 50.00 mL of a 0.00500 M solution
    15·1 answer
  • Complete the following equation of nuclear transmutation.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!