Barfoed's test is a concoction test utilized for identifying the nearness of monosaccharides. It depends on the diminishment of copper(II) acetic acid derivation to copper(I) oxide (Cu2O), which frames a block red hasten.
Barfoed's reagent comprises of a 0.33 molar arrangement of unbiased copper acetic acid derivation in 1% acidic corrosive arrangement. The reagent does not keep well and it is, thusly, fitting to make it up when it is really required. May store uncertainly as per a few MSDS's.
Answer:
the health codes would not cover the food service complaints
Density is equal to the ratio of mass to the volume.
The mathematical expression is given as:

Density of silver metal bar=
Convert
into g/L
= 0.001 L
Thus, density = 
= 
Volume = 0.5 L
Put the values,


=
Now, convert gram into kg
1 g = 0.001 kg
Therefore, mass in kg= 
= 5.25 kg
Thus, mass of silver metal bar in kg=5.25 kg
Let's note that 1 pint = 473.1765 mL, so 11 pints should be 5204.9415 mL.
We make a proportion out of the word problem
(85 mg glucose/ 100 mL) times (1 g/ 1000 mg) = 4.4242 grams of glucose
The balanced reaction would be:
2CO + O2 = 2CO2
We assume that the gases are ideal gas so that we use the relation that 1 mol of an ideal gas is equal to 22.4 L of the gas at STP. From that relation, we get the number of moles and we can convert it to other units. We do as follows:
1.0 L CO ( 1 mol / 22.4 L ) ( 2 mol CO2 / 2mol CO ) = 0.045 mol CO2 produced
0.045 mol CO2 ( 22.4 L / 1 mol ) = 1 L of CO2
0.045 mol CO2 ( 44.01 g / 1 mol ) = 1.98 g of CO2