Answer:
H2 P4 O1. Explanation: In order to calculate the Empirical formula , we will assume that we have started with 10 g of the compound.
Explanation:
Answer:
Paired = 12
Unpaired = 0
Explanation:
Magnesium is alkaline earth metal.
It is present in second group.
Its atomic number is 12 and atomic mass 24 amu.
Electronic configuration:
Mg₁₂ = 1s² 2s² 2p⁶ 3s²
It can seen from electronic configuration that all electrons are paired because s subshell have one orbital and it can accomodate two electrons. Each s subshells in magnesium have two electrons so these are filled and have paired electrons. While p subshell have three orbitals and can accomodate six electrons two by each orbital with opposite spin thus 2p is also filled and have paired electrons.
Answer: Option (b) is the correct answer.
Explanation:
The energy necessary to remove an electron from a gaseous atom or ion is known as ionization energy.
This means that smaller is the size of an atom more amount of energy has to be supplied to it in order to remove the valence electron. This is because in small atom or element there will be strong force of attraction between the nucleus and electrons.
So, high amount of energy has to be supplied to remove the valence electrons.
As electronic configuration of helium is
. So, due to completely filled valence shell it is more stable in nature.
As a result, we need to provide very high amount of energy to remove an electron from a helium atom.
Thus, we can conclude that out of the given options helium element would the first ionization energy of the atom be higher than that of the diatomic molecule.
Answer:
=60 milligrams
Explanation:
12 x 5
=60 milligrams
Have a nice day!!!!!!! :-)
<u>KA</u>
Answer:
D. 15g
Explanation:
The law of conservation of mass states that, in a chemical reaction, mass can neither be created nor destroyed. This means that the amount of matter in the elements of the reactants must be equal to the amount in the resulting products.
In this question, 25 grams of a reactant AB, was broken down in a reaction to produce 10 grams of products A and X grams of product B. According to the law of conservation of mass, the mass of the reactant must be equal to the total mass of the products. This means that 25 grams must also be the total mass of both products in this reaction. Hence, if product A is 10 grams, product B will be 25 grams - 10 grams = 15 grams.
Therefore, product B must be 15 grams in order to form a total of 25 grams when added to the mass of product A. This will equate the mass of the reactant AB and fulfill the law of conservation of mass.