Hello!
To solve this problem we are going to use the
Henderson-Hasselbach equation and clear for the molar ratio. Keep in mind that we need the value for Acetic Acid's pKa, which can be found in tables and is
4,76:
![pH=pKa + log ( \frac{[CH_3COONa]}{[CH_3COOH]} )](https://tex.z-dn.net/?f=pH%3DpKa%20%2B%20log%20%28%20%5Cfrac%7B%5BCH_3COONa%5D%7D%7B%5BCH_3COOH%5D%7D%20%29%20)
![\frac{[CH_3COOH]}{[CH_3COONa}= 10^{(pH-pKa)^{-1}}=10^{(4-4,76)^{-1}}=5,75](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5BCH_3COOH%5D%7D%7B%5BCH_3COONa%7D%3D%2010%5E%7B%28pH-pKa%29%5E%7B-1%7D%7D%3D10%5E%7B%284-4%2C76%29%5E%7B-1%7D%7D%3D5%2C75%20)
So, the mole ratio of CH₃COOH to CH₃COONa is
5,75Have a nice day!
We calculate for the amount of chromium metal in the reactant by,
= 350 x (mass of Cr2/mass of Cr2O3)
= 350 x (104/152)
= 239.47 grams
The amount of Cr metal in the product is only 213.2 grams. Thus, the percent yield.
percent yield = (213.2 grams/239.47) x 100%
= 89%
<u>Given:</u>
Initial volume of He, V1 = 19.2 L
Initial mass of He, m1 = 0.0860 g
Mass of He removed = 0.205 g
<u>To determine:</u>
The new volume of He i.e V2
<u>Explanation:</u>
Based on Avogadro's law:
Volume of a gas is directly proportional to the # moles of the gas
Volume (V) α moles (n) -----(1)
Atomic mass of He = 4 g/mol
Initial moles of He, n1 = 0.860 g/4 g.mol-1 = 0.215 moles
Final moles of He, n2 = (0.860-0.205)g/4 g.mol-1 = 0.164 moles
Based on eq(1) we have:
V1/V2 = n1/n2
V2 = V1 n2/n1 = 19.2 L * 0.164 moles/0,215 moles = 14.6 L
Ans: New volume is 14.6 L
Explanation: Saponification reaction is a reaction in which hydrolysis of fats takes place under basic conditions giving glycerol and a salt of corresponding fatty acid.
We are given a Fatty acid called as Trimyristin.
Its reaction with KOH leads to the formation of soap and is given by the equation:


The condensed structural formula for the equation is given in the image attached.
The basis of finding the answer to this problem is to know the electronic configuration of Fluorine. That would be: <span>[He] 2s</span>²<span> 2p</span>⁵. The valence electrons, which are the outermost electrons of the atom, are the ones that participate in bonding. <em>Since the highest orbital for F is 2p, that means the highest energy occupied would be 2.</em>