answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sertanlavr [38]
2 years ago
11

Which atomic model states that it is impossible to know the exact location of electrons around the nucleus?

Chemistry
2 answers:
dedylja [7]2 years ago
8 0

Answer:

the Bohr model, an electron's position is known precisely because it orbits the nucleus in a fixed path. In the electron cloud model, the electron's position cannot be known precisely. Only its probable location can be known.

Burka [1]2 years ago
7 0

Answer:Bohr

Explanation:Took the quiz

You might be interested in
Calculate the number of kilojoules of energy required to convert 50.0 grams of solid DMSO initially at a temperature of 19.0°C t
GuDViN [60]

Answer:

20.79 kilojoules

Explanation:

Using Q = m×c×∆T

Where;

Q = Quantity of heat (J)

c = specific heat capacity of solid DMSO (1.80 J/g°C)

m = mass of DMSO

∆T = change in temperature

According to the provided information, m= 50g, initial temperature = 19.0°C, final temperature= 250.0°C

Q = m×c×∆T

Q = 50 × 1.80 × (250°C - 19°C)

Q = 90 × 231

Q = 20790 Joules

To convert Joules to kilojoules, we divide by 1000 i.e.

20790/1000

= 20.79 kilojoules

Hence, 20.79 kilojoules of energy is required to convert 50.0 grams of solid DMSO to gas.

4 0
2 years ago
A generic gas, x, is placed in a sealed glass jar and decomposes to form gaseous y and solid z. 2x(g)↽−−⇀y(g)+z(s) how are these
Aleksandr [31]
Answer: the equilibrium will be displaced to the right leading an increase on the quantities of y(g) and z(s).

Justification:

According to the rules of equilibrium, based on Le Chatellier's priciple, any change in a system in equilibrium will be tried to be compensated to restablish the equilibrium

The higher the amount, and so the concentration, of X(g), the more will the forward reaction proceed leading to an increase on the concentration of the products y(g) and z (s). Look that that will also be accompanied by a decreasing on the pressure, since 2 molecules of the gas X(g) are converted into 1 molecule of the gas y(g).
3 0
2 years ago
Read 2 more answers
Calculate the cell potential E at 25°C for the reaction 2 Al(s) + 3 Fe2+(aq) → 2 Al3+(aq) + 3 Fe(s) given that [Fe 2+] = 0.020 M
Elodia [21]

Answer:

1.18 V

Explanation:

The given cell is:

Al(s)/Al^{3+}(0.10M)||Fe^{2+}(0.020M)/Fe(s)

Half reactions for the given cell follows:

Oxidation half reaction: Al(s)\rightarrow Al^{3+}(0.10M)+2e^-;E^o_{Al^{3+}/Al}=-1.66V

Reduction half reaction: Fe^{2+}(0.020M)+2e^-\rightarrow Fe(s);E^o_{Fe^{2+}/Fe}=-0.45V

Multiply Oxidation half reaction by 2 and Reduction half reaction by 3

Net reaction: 2Al(s)+3Fe^{2+}(0.020M)\rightarrow 2Al^{3+}(0.10M)+3Fe(s)

Oxidation reaction occurs at anode and reduction reaction occurs at cathode.

To calculate the E^o_{cell} of the reaction, we use the equation:

E^o_{cell}=E^o_{cathode}-E^o_{anode}

Putting values in above equation, we get:

E^o_{cell}=-0.45-(-1.66)=1.21V

To calculate the EMF of the cell, we use the Nernst equation, which is:

E_{cell}=E^o_{cell}-\frac{0.059}{n}\log \frac{[Al^{3+}]^2}{[Fe^{2+}]^3}

where,

E_{cell} = electrode potential of the cell = ?V

E^o_{cell} = standard electrode potential of the cell = +1.21 V

n = number of electrons exchanged = 6

Putting values in above equation, we get:

E_{cell}=1.21-\frac{0.059}{6}\times \log(\frac{0.10^2}{0.020^3})\\\\E_{cell}=1.18V

5 0
2 years ago
When 13.6 g of calcium chloride, CaCl2, was dissolved in 100.0 mL of water in a coffee cup calorimeter, the temperature rose fro
DanielleElmas [232]

Answer:

THE ENTHALPY OF SOLUTION IS 3153.43 J/MOL OR 3.15 KJ/MOL.

Explanation:

1. write out the variables given:

Mass of Calcium chloride = 13.6 g

Change in temperature = 31.75°C - 25.00°C = 6.75 °C

Density of the solution = 1.000 g/mL

Volume = 100.0 mL = 100.0 mL

Specific heat of water = 4.184 J/g °C

Mass of the water = unknown

2. calculate the mass of waterinvolved:

We must first calculate the mass of water in the bomb calorimeter

Mass = density  * volume

Mass = 1.000 * 100

Mass = 0.01 g

3. calculate the quantity of heat evolved:

Next is to calculate the quantity of heat evolved from the reaction

Heat = mass * specific heat of water * change in temperature

Heat = mass of water * specific heat *change in temperature

Heat = 13.6 g * 4.184 * 6.75

Heat = 13.6 g * 4.184 J/g °C * 6.75 °C

Heat = 384.09 J

Hence, 384.09J is the quantity of heat involved in the reaction of 13.6 g of calcium chloride in the calorimeter.

4. calculate the molar mass of CaCl2:

Next is to calculate the molar mas of CaCl2

Molar mass = ( 40 + 35.5 *2) = 111 g/mol

The number of moles of 13.6 g of CaCl2 is then:

Number of moles of CaCl2 = mass / molar mass

Number of moles = 13.6 g / 111 g/mol

Number of moles = 0.1225 mol

So 384.09 J of heat was involved in the reaction of 1.6 g of CaCl2 in a calorimter which translates to 0.1225 mol of CaCl2..

5. Calculate the enthalpy of solution in kJ/mol:

If 1 mole of CaCl2 is involved, the heat evolved is therefore:

Heat per mole = 384.09 J / 0.1225 mol

Heat = 3 135.43 J/mol

The enthalpy of solution is therefore 3153.43 J/mol or 3.15 kJ/mol.

5 0
2 years ago
A solution of 20.0 g of which hydrated salt dissolved in 200 g H2O will have the lowest freezing point? (A) CuSO4 • 5 H2O (M = 2
Andrews [41]

Answer:

(D) Na₂SO₄•10H₂O (M = 286).

Explanation:

  • The depression in freezing point of water by adding a solute is determined using the relation:

ΔTf = i.Kf.m,

Where, <em>ΔTf </em>is the depression in freezing point of water.

<em>i</em> is van't Hoff factor.

<em>Kf </em>is the molal depression constant.

<em>m</em> is the molality of the solute.

  • Since, Kf and m is constant for all the mentioned salts. So, the depression in freezing point depends strongly on the van't Hoff factor (i).
  • van't Hoff factor is the ratio between the actual concentration of particles produced when the substance is dissolved and the concentration of a substance as calculated from its mass.

(A) CuSO₄•5H₂O:

CuSO₄ is dissociated to Cu⁺² and SO₄²⁻.

So, i = dissociated ions/no. of particles = 2/1 = 2.

(B) NiSO₄•6H₂O:

NiSO₄ is dissociated to Ni⁺² and SO₄²⁻.

So, i = dissociated ions/no. of particles = 2/1 = 2.

(C) MgSO₄•7H₂O:

MgSO₄ is dissociated to Mg⁺² and SO₄²⁻.

So, i = dissociated ions/no. of particles = 2/1 = 2.

(D) Na₂SO₄•10H₂O:

Na₂SO₄ is dissociated to 2 Na⁺ and SO₄²⁻.

So, i = dissociated ions/no. of particles = 3/1 = 3.

∴ The salt with the high (i) value is Na₂SO₄•10H₂O.

So, the highest ΔTf resulted by adding Na₂SO₄•10H₂O salt.

4 0
2 years ago
Other questions:
  • What mass of ammonium thiocyanate (nh4scn) must be used if it is to react completely with 5.7 g barium hydroxide octahydrate?
    12·1 answer
  • When elemental sodium is added to water, the sodium atoms ionize spontaneously. uncharged na becomes na+. this means that the na
    5·1 answer
  • In the manufacture of steel, pure oxygen is blown through molten iron to remove some of the carbon impurity. if the combustion o
    13·2 answers
  • A 0.680 M Ca(OH)2 solution was prepared by dissolving 55.0 grams of Ca(OH)2 in enough water. What is the total volume of the sol
    9·2 answers
  • Help please?
    9·2 answers
  • Consider the following data concerning the equation: H2O2 + 3I– + 2H+ → I3– + 2H2O [H2O2] [I–] [H+] rate I 0.100 M 5.00 × 10–4 M
    10·1 answer
  • Write a chemical formula for each molecular model. (Blue ball represents nitrogen atom, red ball represents oxygen atom, white b
    8·1 answer
  • Calculate the wavelength of a photon of green light that has a frequency (v) of 5.76x10^14 s^-1
    9·1 answer
  • The table shows the densities of four samples, each of the same volume.
    15·2 answers
  • Perform the following operation
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!