answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
11111nata11111 [884]
2 years ago
11

How would you prepare 100 ml of 0.4 M MgSO4 from a stock solution of 2 M MgSO4?

Chemistry
1 answer:
miss Akunina [59]2 years ago
7 0
OK, so to answer this question, you will simply use the molality equation which is as follows:
<span>M1V1 = M2V2 
In the givens you have:
M1 = 2M
V1 is the unknown
M2 = 0.4M
V2 = 100 ml

</span>plug in the givens in the above equation:
<span>2 x V1 = 0.4 x 100 
</span>therefore:
V1 = 20 ml

Based on this: you should take 20 ml of the 2 M solution and make volume exactly 100 ml in a volumetric flask by diluting in water.

You might be interested in
Why does silver iodide have a higher melting point than vanillin
MAVERICK [17]
AgI has a higher melting point than vanillin because it is an ionic compound. The bonds are held more tightly together than in vanillin because it is a covalent compound. Ionic bonds have a higher melting point because the electrons are being transferred from one atom to the other.
5 0
2 years ago
In May 2016, William Trubridge broke the world record in free diving (diving underwater without the use of supplemental oxygen)
Maru [420]

Answer:

The volume that this same amount of air will occupy in his lungs when he reaches a depth of 124 m is - 0.27 L.

Explanation:

Using Boyle's law  

{P_1}\times {V_1}={P_2}\times {V_2}

Given ,  

V₁ = 3.6 L  

V₂ = ?

P₁ = 1.0 atm

P₂ = 13.3 atm (From correct source)

Using above equation as:

{P_1}\times {V_1}={P_2}\times {V_2}

{1.0\ atm}\times {3.6\ L}={13.3\ atm}\times {V_2}

{V_2}=\frac{{1.0}\times {3.6}}{13.3}\ L

{V_2}=0.27\ L

The volume that this same amount of air will occupy in his lungs when he reaches a depth of 124 m is - 0.27 L.

7 0
2 years ago
Consider four sealed, rigid containers with the following volumes: 50 mL, 100 mL, 250 mL, and 500 mL. If each of these contains
dsp73
First, we assume that helium behaves as an ideal gas such that the ideal gas law is applicable.
                                     PV = nRT
where P is pressure, V is volume, n is number of moles, R is universal gas constant, and T is temperature. From the equation, if n, R, and T are constant, there is an inverse relationship between P and V. From the given choices, the container with the greatest pressure would be the 50 mL. 
5 0
2 years ago
A 63.5 g sample of an unidentified metal absorbs 355 ) of heat when its temperature changes
insens350 [35]

0.208 is the specific heat capacity of the metal.

Explanation:

Given:

mass (m)  = 63.5 grams 0R 0.0635 kg

Heat absorbed (q) = 355 Joules

Δ T (change in temperature) = 4.56 degrees or 273.15+4.56 = 268.59 K

cp (specific heat capacity) = ?

the formula used for heat absorbed  and to calculate specific heat capacity of a substance will be calculated by using the equation:

q = mc Δ T

c = \frac{q}{mΔ T}

c = \frac{355}{63.5X 268.59}

 = 0.208 J/gm K

specific heat capacity of 0.208 J/gm K

The specific heat capacity is defined as  the heat required to raise the temperature of a substance which is 1 gram. The temperature is in Kelvin and energy required is in joules.

 

5 0
2 years ago
PLEASE HELP!!! The image represents the reaction between a certain number of molecules of N2 and H2.
77julia77 [94]

Answer:

  • <u><em>The leftover reactant is the nitrogen gas, N₂.</em></u>

Explanation:

As per your description:

<u>1. Square on the left: N₂(g)</u>

  • 3 units of two joint circles: this represents 3 molecules of nitrogen gas, N₂(g).

<u>2. Square on the right: H₂(g)</u>

  • 3 units of two joint circles: this represents 3 molecules of hydrogen gas, H₂(g).

<u>3. Reaction</u>

If the maximum possible amount of NH₃ is formed during the reaction, you assume that the reaction goes to completion.

The chemical equation that represents the reaction is:

  • N₂(g) +  H₂(g) → NH₃(g)

Which must be balanced:

  • N₂(g) +  3H₂(g) → 2NH₃(g)

That means that 1 molecule (or 1 mol) of N₂(g) reacts with 3 molecules (or 3 moles ) of  H₂(g) to produce 2 molecules (or 2 moles) of NH₃(g).

Since, the squares show that there are 3 molecules of each reactant, the 3 molecules of hydrogen gas will be able to react with 1 molecule of nitrogen gas. When that happens, all the hydrogen gas is consumend and yet two molecules of nitrogen gas will remain unreacted. Hence, the nitrogen gas is the leftover reactant.

4 0
2 years ago
Read 2 more answers
Other questions:
  • A 5 mole sample of liquid acetone is converted to a gas at 75.0°C. If 628 J are required to raise the temperature of the liquid
    12·1 answer
  • If a large marshmallow has a volume of 2.75 in3 and density of 0.242 g/cm3, how much would it weigh in grams? 1 in3=16.39 cm3.
    9·1 answer
  • Is iron bromide magnetic if no why
    14·2 answers
  • What is the absolute structural necessity for an alcohol to be oxidized with chromium trioxide?
    14·1 answer
  • The partial pressures in an equilibrium mixture of NO, Cl2, and NOCI at 500 K are as follows: PNo = 0.240 atm, Pel2 = 0.608 atm,
    9·1 answer
  • Calculate ΔG o for the following reaction at 25°C: 3Mg(s) + 2Al3+(aq) ⇌ 3Mg2+(aq) + 2Al(s) Enter your answer in scientific notat
    11·1 answer
  • What is the limiting reactant for the following reaction given we have 3.4 moles of Ca(NO3)2 and 2.4 moles of Li3PO4?Reaction: 3
    7·2 answers
  • Rubbing alcohol contains 615g of isopropanol (C3H7OH) per liter (aqueous solution). Calculate the molality of this solution. Giv
    12·1 answer
  • The above shows a balloon full of gas which has a volume of 120.0 mL
    9·1 answer
  • 100. cal of heat are added to 18.0 g of ethanol (0.581 cal/g °C) originally at 23 °C. The final temperature is ____________.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!