A: 6.37gNaCl
B: 1 mol NaCl
C: 58.5 g NaCl
These answers are correct on e2020 I just got them right.
While I am not the brainliest I can certainly answer.
This was a chemical change because the chemical components were changed, a big giveaway to this was the fizzing, however the temperature rising was also another giveaway.
Using the Equation: PV=nRT
Where P is the pressure 60 cmHg or 600 mmHg or 600/760= 0.789 atm
V is the volume 125 ml or 0.125 L, n is the number of moles, R is a constant 0.082057, and T is temperature 25 °C or 298 K;
Therefore:
0.789 × 0.125 = n × 0.082057 × 298
n = 0.0987/24.45
= 0.004036 mol
0.004036 mole has a mass of 0.286 g
Hence; 1 mole has a mass of 0.286/0.004036
= 70.8 g /mol
Therefore the molar mass of the gas is 71 g/mol (2 sfg)
Answer:
if chemistry hadn't been put up to practical use, we wouldn't truly understand the reason why humans are humans like makes up humans (including other understandings of biology, etc) and we wouldn't be able to have the advancements we have today (vaccines, etc).
Explanation:
Answer:
The essence including its particular subject is outlined in the following portion mostly on clarification.
Explanation:
- The energy throughout the campfire comes from either the wood's latent chemical energy until it has been burned to steam up and launch up across the campfire. The electricity generation for something like a campfire seems to be in the context including its potential chemical energy which is contained throughout the firewood used only to inflame the situation.
- The energy output seems to be in the different types of heat energy radiating across the campfire, laser light generated off by the blaze, and perhaps a little number of electrical waves, registered throughout the firewood cracking whilst they combust throughout the blaze.
and,
chemical energy ⇒ heat energy + light energy + sound energy