<span>Answer:
For this problem, you would need to know the specific heat of water, that is, the amount of energy required to raise the temperature of 1 g of water by 1 degree C. The formula is q = c X m X delta T, where q is the specific heat of water, m is the mass and delta T is the change in temperature. If we look up the specific heat of water, we find it is 4.184 J/(g X degree C). The temperature of the water went up 20 degrees.
4.184 x 713 x 20.0 = 59700 J to 3 significant digits, or 59.7 kJ.
Now, that is the energy to form B2O3 from 1 gram of boron. If we want kJ/mole, we need to do a little more work.
To find the number of moles of Boron contained in 1 gram, we need to know the gram atomic mass of Boron, which is 10.811. Dividing 1 gram of boron by 10.811 gives us .0925 moles of boron. Since it takes 2 moles of boron to make 1 mole B2O3, we would divide the number of moles of boron by two to get the number of moles of B2O3.
.0925/2 = .0462 moles...so you would divide the energy in KJ by the number of moles to get KJ/mole. 59.7/.0462 = 1290 KJ/mole.</span>
Molar mass <span>CH2BrCH2Br = 188.0 g/mol
1 mole ---------- 188.0 g
</span>0.500 moles ----- ?
mass = 0.500 * 188.0 / 1
= 94.0 g
Answer C
hope this helps!
Carbonated drinks have the air under pressure so that carbon bubbles are forced into the drink, keeping it carbonated. So when you open a can, the air under pressure in the can comes out of the can at a high speed, making a "whooshing" sound. The gas law that applies to this concept is the Boyle's Law (PV=k or P1V1=P2V2).
The concentration of a solution is the number of moles of solute per fixed volume of solution.
Concentration (C) = number of moles of solute (n) / volume of the solution (v)
we have to find the volume of the solution when 36.0 g of Ca(OH)₂ is added to water to make a solution of concentration 0.530 M
mass of Ca(OH)₂ added - 36.0 g
number of moles of Ca(OH)₂ - 36.0 g / 74.1 g/mol = 0.486 mol
we know the concentration of the solution prepared and the number of moles of Ca(OH)₂ added, substituting these values in the above equation, we can find the volume of the solution
C = n/v
0.530 mol/L = 0.486 mol / V
V = 0.917 L
answer is 0.917 L
Q = mΔT(Cp)
where Q = heat energy in J (joules),
m = mass in g, ΔT = change in temper. (°C),
Cp = heat capacity in J/(g°C)
Water has a higher heat capacity, meaning that once heat energy is absorbed, it holds that heat longer than bread. Also though, a higher heat capacity of water means that it takes more energy to heat it up.
I don't see any specific data listed for this lab??