Answer:
<h2>1. Ionic compound-

</h2><h2>2. Polar molecular compound-

</h2>
Explanation:
Mg is a metal that has 12 atomic numbers and thus its electronic configuration is
. The outer most shell of this element has 2 electrons so it loses 2 electrons and thus form
ions. Br is a nonmetal and has 35 atomic number so its electronic configuration is
. Since its outermost shell has 7 electrons so it can accept one electron and thus forms
. So magnesium ion and bromide ion combine and forms an ionic compound
.
P is also a nonmetal and combine with Br with covalent bond and due to electronegativity differences form polar covalent compound such as
.
Answer:
(A) pH < 1 the predominant form is the cation: H3C-C(H)(NH3+)-COOH
(B) pH = pl the predominant form is the zwitterion H3C-C(H)(NH3+)-COO-
(C) pH > 11 the predominant form is the anion: H3C-C(H)(NH2)-COO-
(D) Does not occurs in any significant pH: H3C-C(H)(NH2)-COOH
Explanation:
Amino acids are bifunctional because they have an amine group and a carboxyl group. The amine group is a weak base and the carboxyl group is a weak acid, but the pKa of both groups will depend on the whole structure of the amino acid. Also, every amino acid has an isoelectric point (pI), which means the pH were the predominant form of the amino acid is the zwitterion. The structure of the alanine (CH3CH2NH2COOH) shows it has the carboxyl group at C1 with a pKa1 of 2.3 and the amino group at C2 whit the pKa2 of 9.7. The isoelectric poin (pI) of Alanine is 6. Consequently, the protonation of the molecule will depend on the pH of the solution. There are three possibilities:
1) If the pH is under the pKa of the carboxyl group (2.3) the predominant form will be with the amino group protonated, forming a cation (CH3CH(NH3+)COOH).
2) If the pH is between pKa1 (2.3) and pKa2 (9.7) the predominant form will be the zwitterion (CH3CH(NH3+)(COO-)).
3) If the pH is upper the pKa2 of the amino group (9.7) the predominant form will be with the carboxyl group deprotonated, forming an anion (CH3CHNH2(COO-)).
The force on the wall is actually the pressure exerted by gas molecules
Higher the pressure more the force exerted on the walls of container
The pressure depends upon the number of molecules of a gas
In a mixture of gas the pressure depends upon the mole fraction of the gas
As given the mole fraction of He is more than that of H2 therefore He will exert more pressure on the wall
The ratio of impact will be
H2 / He = 2/3 / 1/3 = 2: 1
Molality is the number of moles of solute in 1 kg of solvent
number of moles of sucrose - mass of sucrose / molar mass
number of moles of sucrose - 34.2 g / 342.34 g/mol = 0.0999 mol
number of moles in 125 g of water - 0.0999 mol
therefore number of moles in 1000 g - 0.0999 / 125 x 1000 = 0.799 mol/kg
molality of sucrose solution - 0.799 mol/kg
Answer:
6.25 hours
Explanation:
From the question;
- Penny can knit 4 rows in 5 minutes
We need to determine the time it will take for her to knit 300 rows
4 rows = 5 minutes
300 rows = ?
= (300 × 5 ) ÷ 4
= 375 minutes
But, 1 hour = 60 minutes
Therefore;
= 375 ÷ 60
= 6.25 hours
Thus, it will take penny 6.25 hours to knit 300 rows