In the compound potassium nitrate (KNO3), the atoms within the nitrate ion are held together with COVALENT bonding, and the potassium ion and nitrate ion are held together by IONIC bonding.
A covalent bond, also called a molecular bond, is a chemical bond that involves the sharing of electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. Covalent bond is formed between two non-metals.
Ionic bonds form when one atom gives up one or more electrons to another atom. It is the complete transfer of valence electron(s) between oppositely charged atoms. Ionic bond is formed between metal (electropositive element) and non-metal(electronegative element)
In nitrate ions the Nitrogen (N) and Oxygen (O) both are non-metals and it involves the sharing of electron pairs between N and O atoms, so the bonding in Nitrate (
) ion is covalent bonding.
In potassium nitrate , Potassium (K) is a metal and Nitrate (
) ion is non-metal and it involves the complete transfer of valence electron between oppositely charged atoms (K+) and (
). So the bonding between Potassium and Nitrate is Ionic bonding.
NOTE : Bonding between Non-metals is Covalent bonding.
Bonding between Metal and Non-metals is Ionic bonding.
<h3>
Answer:</h3>
0.699 mole CaCl₂
<h3>
Explanation:</h3>
To get the number of moles we use the Avogadro's number.
Avogadro's number is 6.022 x 10^23.
But, 1 mole of a compound contains 6.022 x 10^23 molecules
In this case;
we are given 4.21 × 10^23 molecules of CaCl₂
Therefore, to get the number of moles
Moles = Number of molecules ÷ Avogadro's constant
= 4.21 × 10^23 molecules ÷ 6.022 x 10^23 molecules/mole
= 0.699 mole CaCl₂
Hence, the number of moles is 0.699 mole of CaCl₂
For a) [Ru(NH₃)₅Cl]SO₄
Ru configuration = d⁶s²
In this complex Ru oxidation number is +3
Ru³⁺ configuration = d⁵
number of

electrons = 5
For b) Na₂[Os(CN)₆]
Os configuration = d⁶s²
In this complex Os oxidation number is +4
Os⁴⁺ configuration = d⁴
number of

electrons = 4
The answer is (4) Add enough solvent to 30.0 g of solute to make 1.0 L solution. The molarity is calculated using volume of the solution. When solute dissolving, the total volume will change. So the final volume of solution need to be 1.0 L.
<span>Empirical formula for C2H4(OH)2 is</span><span>
C1H3O1
</span>