First we will calculate the number of moles of Iron:

, where n is the number of moles, m is the mass of iron in the reaction and M is the Atomic weight.

moles of Iron.
The same number of moles of Oxygen will take part in the reaction.
So

where 32 is the Atomical Weight of Oxygen (16 x 2).
=>

g
<span>Na + Cl = NaCl
answer : </span><span>synthesis reaction .
hope this helps!
</span>
Answer:
The answer to your question is: 6 moles of HNO₃
Explanation:
Data
Volume = 25 ml
Concentration = 6 M HNO₃
Diluted 100 ml
Formula
Molarity = # moles / volume
# of moles = Volume x Molarity
Process
# of moles = 0.10 x 6
= 6 moles
I believe the correct answer is the first option. To increase the molar concentration of the product N2O4, you should increase the pressure of the system. You cannot determine the effect of changing the temperature since we cannot tell whether it is an endothermic or an exothermic reaction. Also, decreasing the number of NO2 would not increase the product rather it would shift the equilibrium to the left forming more reactants. The only parameter we can change would be the pressure. And, since NO2 takes up more space than the product increasing the pressure would allow the reactant to collide more forming the product.
Answer:
The boiling point of water at 550 torr will be 91 °C or 364 Kelvin
Explanation:
Step 1: Data given
Pressure = 550 torr
The heat of vaporization of water is 40.7 kJ/mol.
Step 2: Calculate boiling point
⇒ We'll use the Clausius-Clapeyron equation
ln(P2/P1) = (ΔHvap/R)*(1/T1-1/T2)
ln(P2/P1) = (40.7*10^3 / 8.314)*(1/T1 - 1/T2)
⇒ with P1 = 760 torr = 1 atm
⇒ with P2 = 550 torr
⇒ with T1 = the boiling point of water at 760 torr = 373.15 Kelvin
⇒ with T2 = the boiling point of water at 550 torr = TO BE DETERMINED
ln(550/760) = 4895.4*(1/373.15 - 1/T2)
-0.3234 = 13.119 - 4895.4/T2
-13.4424= -4895.4/T2
T2 = 364.2 Kelvin = 91 °C
The boiling point of water at 550 torr will be 91 °C or 364 Kelvin