Answer:
NH₃/NH₄Cl
Explanation:
We can calculate the pH of a buffer using the Henderson-Hasselbalch's equation.
![pH=pKa+log\frac{[base]}{[acid]}](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D)
If the concentration of the acid is equal to that of the base, the pH will be equal to the pKa of the buffer. The optimum range of work of pH is pKa ± 1.
Let's consider the following buffers and their pKa.
- CH₃COONa/CH3COOH (pKa = 4.74)
The optimum buffer is NH₃/NH₄Cl.
Answer:If a bouncing ball has a total energy of 20 J and a kinetic energy of 5 J, the ball’s potential energy is 15J.
If the kinetic energy of the ball decreases, then the potential energy will Increase.
Explanation:
Explanation:
Since the wheel moves up and down, the position that represents the potential energy is that which has the maximum height from the ground.
Potential energy is the energy at rest of a body.
It is given as:
Potential energy = m x g x h
m is the mass of the body
g is the acceleration due to gravity
h is the height of the body
We can see that mass and height are directly related to the potential energy a body exerts.
The higher the wheel from ground, the higher its potential energy.
learn more
Potential energy brainly.com/question/10770261
#learnwithBrainly
Answer:
Fe
Explanation:
The electrical conductivity depends mainly on the type of chemical bonds between the atoms of a compound.
In the case of MgF2, FeCl3 and FeO3, these have the type of ionic bond. This means that in the atoms of the compound there is an electron transfer, to keep eight electrons in the outermost layer and thus resemble the electronic configuration of the inert gas closest to each of the two elements, due to this ions of opposite charges are formed that are held together by electrostatic forces. These types of compounds are good conductors of electricity, however, to have this property, they must be dissolved in water or molten.
In the case of Fe, however, the type of union between atoms is metallic. In this type of junction, valence electrons are quite free inside the metal, which makes it easy for them to move. For this reason, this compound will conduct electricity in a solid state.
Answer:
1.3 mL
Explanation:
First, get the density of the olive oil, which is 0.917 kg/mL. Then divide the mass by the density:
1.2kg/0.917kg/mL= 1.3086150491 mL. The kg cancel out, leaving us with mL.
It should have 2 significant figures, because 1.2kg has 2 and we are dividing.