Explanation:
Half life is simply the amount of time it takes for half of a substance to decompose.
Options;
- Carbon-14 has a half-life of 5,730 years. A 30 gram sample will be 10 grams after 5,730 years. This is incorrect. After 5730 years, 15g of the sample ought to remain.
- Nickel-59 has a half-life of 76,000 years. A sample would go through 3 half-lives in 228,000 years. This is correct. 3 * 76000 = 228,000
- Hafnium-182 has a half-life of 9 million years. A 38 gram sample would be 4.75 grams in 27 million years. This is incorrect. Mass after 3 half lives (27/9) = 9.5 (38 / 2 / 2)
- Iron-60 has a half-life of 1.5 million years. In 6 million years a 40 gram sample would be reduced to 10 grams. This is incorrect. Mass after 4 half lives (6 / 1.5) = 2.5 gram (40 / 2 / 2 /2 / 2)
- Lead-202 has a half-life of 52,500 years. The original sample must have been 120 grams if you have a 60 gram sample after 105,000 years. This is incorrect. Original sampe = 240 gram. So after 2 half lives (105,000/52500), mass left = 60 (240 / 2 /2)
Mass of the gas m = 1.66
The calculated temperature T = 273 + 20 = 293
We have to calculate molar mass to determine the gas
Molar Mass = mRT / PV
M = (1.66 x 8.314 x 293) / (101.3 x 1000 x 0.001)
M = 4043.76 / 101.3 = 39.92 g/mol
So this gas has to be Argon Ar based on the molar mass.
Answer: 770 g water are needed to dissolve 27.8 g of ammonium nitrate
in order to prepare a 0.452 m solution
Explanation:
Molality : It is defined as the number of moles of solute present per kg of solvent
Formula used :

where,
n= moles of solute
Moles of
= weight of the solvent in g = ?


Thus 770 g water are needed to dissolve 27.8 g of ammonium nitrate
in order to prepare a 0.452 m solution
Answer:
Heat transferred, Q = 1542.42 J
Explanation:
Given that,
Mass of water, m = 30 grams
Initial temperature, 
Final temperature, 
We need to find the energy transferred. The energy transferred is given by :

c is specific heat of water, c = 4.18 J/g °C
So,

So, 1542.42 J of energy is transferred.
Answer:
91.6 nm
Explanation:
The energy of the hydrogen atom can be calculated by the emission of a photon. When an electron is excited it goes from to the next energetic level, and when it returns to its ground state, it emits a photon. Hydrogen has only one electron, which is at the level n = 1. So, the equation is given:
E = (-21.7x10⁻¹⁹J)/1²
E = -21.7x10⁻¹⁹J
The energy of the photon is the energy absorbed, and because of that is positive (the opposite of the energy released by the electron). This energy can be calculated by:
E = h*c/λ
Where h is the Planck's constant (6.626x10⁻³⁴ J.s), c is the speed of the light (3.00x10⁸ m/s), and λ is the wavelength of the photon.
21.7x10⁻¹⁹ = 6.626x10⁻³⁴ * 3.00x10⁸/λ
λ = 9.16x10⁻⁸ m
λ = 91.6 nm