Answer:
1.43 M
Explanation:
We'll begin by calculating the number of mole of the solid. This can be obtained as follow:
Mass of solid = 8.60 g
Molar mass of solid = 21.50 g/mol
Mole of solid =?
Mole = mass / molar mass
Mole of solid = 8.60 / 21.50
Mole of solid = 0.4 mole
Next, we shall convert 280 mL to litre (L). This can be obtained as follow:
1000 mL = 1 L
Therefore,
280 mL = 280 mL × 1 L / 1000 mL
280 mL = 0.28 L
Thus, 280 mL is equivalent to 0.28 L.
Finally, we shall determine the molarity of the solution. This can be obtained as illustrated below:
Mole of solid = 0.4 mole
Volume = 0.28 L
Molarity =?
Molarity = mole / Volume
Molarity = 0.4 / 0.28
Molarity = 1.43 M
Thus, the molarity of the solution is 1.43 M.
The reaction is given as:
Here, two moles of copper nitrate reacts with four moles of potassium iodide to give two moles of copper iodide, one mole of iodine and four moles of potassium nitrate.
First, calculate the number of moles of copper nitrate.
Number of moles is equal to the product of molarity and volume of solution in litre.
Number of moles =
(1 L =1000 mL)
= 
Copper nitrate requires =
mole of potassium iodide
=
of potassium iodide
Volume of solution in litre = 
Thus, volume of potassium iodide is =
= 
1 L =1000 mL
Volume of potassium iodide in mL =
Hence,
0.2089 M potassium iodide consist of sufficient potassium iodide to react with copper nitrate in 3.88 mL of a 0.3842 M solution of copper nitrate .
Answer:
82.9 mL
Explanation:
1. Volume of silver

2. Volume of gold

3. Total volume of silver and gold
V = 4.766 mL + 2.591 mL = 7.36 mL
4 New reading of water level
V = 75.5 mL + 7.36 mL = 82.9 mL
Its total charge is zero but for the elements:
Sn===> Sn4+ positive
Cl===> Cl- negative