answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DedPeter [7]
2 years ago
12

Hector claims that a single sodium ion and a single oxygen ion do not bond together to form a stable binary ionic compound. Is h

e correct? Why or why not?
A Hector is incorrect. The two ions have opposite charges, so they will bond together in a binary ionic compound.
B Hector is incorrect. The two ions have more than eighteen protons, so they will bond together in a binary ionic compound.
C Hector is correct. The sum of the charges of the two ions must be zero in order for them to form a stable ionic compound.
D Hector is correct. The sum of the protons of the two ions must be divisible by eight in order for them to form a stable ionic compound.
Chemistry
2 answers:
levacccp [35]2 years ago
8 0

Answer:

C

Explanation:

Looking at the periodic table, we can see that sodium is in group 1, so a sodium ion would be Na⁺, with a charge of +1. Oxygen is in group 16, so an oxygen ion would be O²⁻, with a charge of -2.

A compound formed only by a single sodium ion and a single oxygen ion would thus have a charge of -1, and in order to have a stable ionic compound its charge must be zero.

Anuta_ua [19.1K]2 years ago
5 0

Answer: A Hector is incorrect. The two ions have opposite charges, so they will bond together in a binary ionic compound.

Explanation:

For formation of a neutral ionic compound, the charges on cation and anion must be balanced. The cation is formed by loss of electrons by metals and anions are formed by gain of electrons by non metals.

Electronic configuration of sodium:

[Na]=1s^22s^22p^63s^1

Sodium atom will loose two electrons to gain noble gas configuration and form sodium cation with +1 charge.

[tex][Na^{+}]=1s^22s^22p^63s^0[/tex]

Electronic configuration of oxygen:

[O]=1s^22s^22p^4

Oxygen atom will gain one electron to gain noble gas configuration and form oxide ion with -2 charge.

[O^{2-}]=1s^22s^22p^6

Here sodium is having an oxidation state of +1 called as Na^+ cation and oxide O^{2-} is an anion with oxidation state of -2. Thus they combine and their oxidation states are exchanged and written in simplest whole number ratios to give neutral Na_2O.

The cations and anions being oppositely charged attract each other through strong coloumbic forces and form an ionic bond.

You might be interested in
C6H12O6 + 6O2 ---> 6H2O + 6CO2
Ivahew [28]

Answer:

24e⁻ are transferred by the reaction of respiration.

Explanation:

C₆H₁₂O₆   +  6O₂   →   6 H₂O   +  6CO₂

This is the reaction for the respiration process.

In this redox, oxygen acts with 0 in the oxidation state on the reactant side, and -2 in the product side -  REDUCTION

Carbon acts with 0 in the glucose (cause it is neutral), on the reactant side and it has +4, on the product side - OXIDATION

6C →  6C⁴⁺  +  24e⁻

In reactant side we have a neutral carbon, so as in the product side we have a carbon with +4, it had to lose 4e⁻ to get oxidized, but we have 6 carbons, so finally carbon has lost 24 e⁻

6O⁻² +  6O₂  + 24e⁻  →  6O₂²⁻  +  6O⁻²

In reactant side, we have 6 oxygen from the glucose (oxidation state of -2) and the diatomic molecule, with no charge (ground state), so in the product side, we have the oxygen from the dioxide with -2 and the oxygen from the water, also with -2 at the oxidation state. Finally the global charge for the product side is -36, and in reactant side is -12, so it has to win 24 e⁻ (those that were released by the C) to be reduced.

3 0
2 years ago
Methane, CH4, reacts with I2 according to the reaction CH4(g)+I2(g)⇌CH3I(g)+HI(g)
gtnhenbr [62]

Answer:

pCH₄ = 105.1 - 0.42 = 104.68 torr

pI₂ = 7.96 -0.42 = 7.54 torr

pCH₃I = 0.42 torr

pHI = 0.42 torr

Explanation:

Kp is the equilibrium constant for the partial pressure of the gases in the reaction, and it is calculated for a general equation:

aA(g) + bB(g) ⇄ cC(g) + dD(g)

Kp = \frac{(pC)^cx(pD)^d}{(pA)^ax(pB)^b}, where p is the partial pressure in the equilibrium. By the reaction given:

CH₄(g) + I₂(g) ⇄ CH₃I(g) + HI(g)

105.1 torr   7.96 torr  0       0            <em> initial partial pressure</em>

-x                  -x            +x     +x          <em> react</em>

105.1-x       7.96-x      x        x            <em>equilibrium</em>

Then:

Kp = \frac{pCH3IxpHI}{pCH4xpI2} = \frac{x^2}{(105.1-x)(7.96-x)}

2.26x10^{-4} = \frac{x^2}{836.596 - 113.06x -x^2}

x² = 0.1891 - 0.0255x -2.26x10⁻⁴x²

0.9997x² + 0.0255x - 0.1891 = 0

Using Bhaskara's rule:

Δ = (0.0255)² - 4x(0.9997)x(-0.1891)

Δ = 0.7568

x = \frac{-b+/-\sqrt{0.7568} }{2a} = \frac{-0.0255 +/-0.8699}{1.9994}

Using only the positive term, x = 0.42 torr.

So,

pCH₄ = 105.1 - 0.42 = 104.68 torr

pI₂ = 7.96 -0.42 = 7.54 torr

pCH₃I = 0.42 torr

pHI = 0.42 torr

8 0
2 years ago
Read 2 more answers
Naturally occurring iodine has an atomic mass of 126.9045 amu. A 12.3849-g sample of iodine is accidentally contaminated with 1.
Oliga [24]

Answer:

127.0665 amu

Explanation:

Firstly, to answer the question correctly, we need to access the percentage compositions of the iodine and the contaminant iodine. We can do this by placing their individual masses over the total and multiplying by 100%.

We do this as follows. Since the mass of the contaminant iodine is 1.00070g, the mass of the 129I in that particular sample will be 12.3849 - 1.00070 = 11.3842g

The percentage abundances is as follows:

Synthetic radioisotope % = 1.0007/12.3849 * 100% = 8.1%

Since there are only two constituents, the percentage abundance of the 129I would be 100 - 8.1 = 91.9%

Now, we can use these percentages to get the apparent atomic mass. We get this by multiplying the percentage abundance’s by the atomic masses of both and adding together.

That is :

[8.1/100 * 128.9050] + [91.9/100 * 126.9045] = 10.441305 + 116.6252355 = 127.0665 amu

6 0
2 years ago
Give the number of significant figures in this number: 40.00
Tatiana [17]

A significant figure is every symbol that made the number itself.

In this case, the number 40.00 has four figures but only two of them are significant 40, this is because you haven't got any more decimals than the first zero.

If you have a case with zeros in front, you take to the first non zero digits.

For example, 0.071004 you wold express as 0.071 and those 7, and 1 are the significant ones.

4 0
2 years ago
Read 2 more answers
Write equations that show the processes that describe the first, second, and third ionization energies for a gaseous gadolinium
Anastaziya [24]

Answer:

Gd → Gd⁺ + 1e⁻, Gd⁺ → Gd⁺² + 1e⁻, Gd⁺² → Gd⁺³ + 1e⁻

Explanation:

The ionization energy is the energy necessary to remove one electron of the atom, transforming it in a cation. The first ionization energy is the energy necessary to remove the first electron, the second energy, to remove the second electron, and then successively.

Thus, for gadolinium (Gd)

Fisrt ionization:

Gd → Gd⁺ + 1e⁻

Second ionization:

Gd⁺ → Gd⁺² + 1e⁻

Third ionization:

Gd⁺² → Gd⁺³ + 1e⁻

3 0
2 years ago
Other questions:
  • When potassium bromate (kbro3 ) is heated, it decomposes into potassium bromide and a gas that supports the combustion of a glow
    8·1 answer
  • Which of the reagents listed below would efficiently accomplish the transformation of 2-methyl-3-cyclopentenol into 2-methyl-3-c
    6·1 answer
  • The proprietor of a rock shop insists that a nugget is pure gold. if the nugget occupies a volume of 5.40 ml, what would its mas
    12·1 answer
  • Which of these facts best illustrates why regulation of alcohol consumption is necessary
    10·1 answer
  • Which statement most completely defines a wave? *
    12·1 answer
  • A gas sample enclosed in a rigid metal container at room temperature (20.0∘C) has an absolute pressure p1. The container is imme
    5·1 answer
  • At 25 °C, an aqueous solution has an equilibrium concentration of 0.00423 0.00423 M for a generic cation, A + A+ (aq), and 0.004
    14·1 answer
  • A 5-gal, cylindrical open container with a bottom area of 120 square inches is filled with glycerin and rests on the floor of an
    6·1 answer
  • What is the final temperature of the solution formed when 1.52 g of NaOH is added to 35.5 g of water at 20.1 °C in a calorimeter
    7·1 answer
  • What is the energy of x radiation with a 1 x 10^-6 wavelength?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!