Answer:
The partial pressure of carbon dioxide is 22.8 mmHg
Explanation:
Dalton's Law is a gas law that relates the partial pressures of the gases in a mixture. This law says that the pressure of a gas mixture is equal to the sum of the partial pressures of all the gases present.
In this case:
Ptotal=Pnitrogen + Poxygen + Pcarbondioxide
You know that:
- Ptotal= 0.998 atm
- Pnitrogen= 0.770 atm
- Poxygen= 0.198 atm
- Pcarbondioxide= ?
Replacing:
0.998 atm=0.770 atm + 0.198 atm + Pcarbondioxide
Solving:
Pcarbondioxide= 0.998 atm - 0.770 atm - 0.198 atm
Pcarbondioxide= 0.03 atm
Now you apply the following rule of three: if 1 atm equals 760 mmHg, 0.03 atm how many mmHg equals?

Pcarbondioxide= 22.8 mmHg
<u><em>The partial pressure of carbon dioxide is 22.8 mmHg</em></u>
Answer:
The specific heat for the titanium metal is 0.524 J/g°C.
Explanation:
Given,
Q = 1.68 kJ = 1680 Joules
mass = 126 grams
T₁ = 20°C
T₂ = 45.4°C
The specific heat for the metal can be calculated by using the formula
Q = (mass) (ΔT) (Cp)
Here, ΔT = T₂ - T₁ = 45.4 - 20 = 25.4°C.
Substituting values,
1680 = (126)(25.4)(Cp)
By solving,
Cp = 0.524 J/g°C.
The specific heat for the titanium metal is 0.524 J/g°C.
Answer
D 160g
Explanation:
<u>Write the equation:</u>
Combustion reactions use oxygen and release water and heat, so
CH₃OH(g) + O₂(g) → CO₂(g) + H₂O(g)
Balance that:
2CH₃OH(g) + 3O₂(g) → 2CO₂(g) + 4H₂O(g)
<u>Find moles of carbon dioxide:</u>
We need to know the number of moles of CO₂. This rxn is at STP, so at STP one mole of gas = 22.4 liters.
112 L * 1 mol/22.4 L = <em>5 mol CO₂</em>
<u>Find moles of methanol:</u>
Based on the chemical equation, for every 2 mol methanol, there are 2 mol carbon dioxide. So for every 5 mol carbon dioxide, there are 5 mol methanol!
5 mol CO₂ = 5 mol CH₃OH
Molar mass of methanol: 12.01 + 3*1.008 + 16.00 + 1.008 = <em>32.04 g/mol</em>
Moles of methanol: 5 mol * 32.04 g/mol = 160.2 g methanol
≈ 160 mol methanol
Answer:
Explanation:
We are to carefully sketch a curve that relates to the potential energy of two O atoms versus the distance between their nuclei.
From the diagram, O2 have higher potential energy than the N2 molecule. Because on the periodic table, the atomic size increases from left to right on across the period, thus O2 posses a larger atomic size than N2 atom.
Therefore, the bond length formation between the two O atoms will be larger compared to that of the two N atoms.
1) Find the number of molecules in 7.88 g of sulfur
molar mass of S8 = 8*atomic mass of S = 8 * 32.0 g / mol = 256.0 g/mol
Number of moles = mass in grams / atomic mass = 7.88 g / 256.0 g / mol = 0.0308 moles
2) Find the mass of 0.0308 moles of P4
mass = number of moles * molar mass
molar mass of P4 = 4 * atomic mass of P = 4 * 31 g/mol = 124 g/mol
mass of P4 = 0.0308 moles * 124 g/mol = 3.8192g ≈ 3.82 g.
Answer: 3.82 grams of P4 will have the same number of molecules as 7.88 g of S8 (that is 0.0308 moles of molecules)