Answer:Small-scale technique means a small quantity of chemicals that contribute to the safety of the experiments. Instead of using big beaker of chemical, micro scale technique utilize small quantities of chemical and scaled-down science equipment.
Explanation:
Explanation:
The reaction equation will be as follows.

Hence, moles of Na = moles of electron used
Therefore, calculate the number of moles of sodium as follows.
No. of moles = 
=
(as 1 kg = 1000 g)
= 195.65 mol
As, Q =
where F = Faraday's constant
= 
=
mol C
Relation between electrical energy and Q is as follows.
E = 
Hence, putting the given values into the above formula and then calculate the value of electricity as follows.
E = 
= 
= 
As 1 J =
kWh
Hence,
kWh
= 3.39 kWh
Thus, we can conclude that 3.39 kilowatt-hours of electricity is required in the given situation.
Ans: The final volume of the balloon is 4.5 L
<u>Given:</u>
Volume of balloon inflated with 3 breaths = 1.7 L
<u>To determine:</u>
Volume of balloon after a total of 3+5 = 8 breaths
<u>Explanation:</u>
Volume of the balloon per breath = 1.7 L * 1 breath/3 breaths = 0.567 L
Final volume of balloon after 8 breaths = 0.567 L * 8 breath/1 breath
= 4.536 L
Answer:
296.1 day.
Explanation:
- The decay of radioactive elements obeys first-order kinetics.
- For a first-order reaction: k = ln2/(t1/2) = 0.693/(t1/2).
Where, k is the rate constant of the reaction.
t1/2 is the half-life time of the reaction (t1/2 = 1620 years).
∴ k = ln2/(t1/2) = 0.693/(74.0 days) = 9.365 x 10⁻³ day⁻¹.
- For first-order reaction: <em>kt = lna/(a-x).</em>
where, k is the rate constant of the reaction (k = 9.365 x 10⁻³ day⁻¹).
t is the time of the reaction (t = ??? day).
a is the initial concentration of Ir-192 (a = 560.0 dpm).
(a-x) is the remaining concentration of Ir-192 (a -x = 35.0 dpm).
<em>∴ kt = lna/(a-x)</em>
(9.365 x 10⁻³ day⁻¹)(t) = ln(560.0 dpm)/(35.0 dpm).
(9.365 x 10⁻³ day⁻¹)(t) = 2.773.
<em>∴ t </em>= (2.773)/(9.365 x 10⁻³ day⁻¹) =<em> 296.1 day.</em>
Answer:
10
Explanation:
pH is defined as the negative logarithm of the concentration of hydrogen ions.
Thus,
pH = - log [H⁺]
Thus, from the formula, more the concentration of the hydrogen ions or more the acidic the solution is, the less is the pH value of the solution.
Thus, solution with pH = 3 will be more acidic than solution with pH =4
Thus, concentration of the [H⁺] when pH =3
3 = - log [H⁺]
[H⁺] = 10⁻³ M
For pH = 4, [H⁺] = 10⁻⁴ M
<u>hence, pH = 3 is 10 times more acidic than pH = 4</u>