Answer:
Explanation:
Oxidation no is equal to charge on each atomic ion. If it is increased , element is oxidised and if it is decreased , element is reduced .
2AgCl+Zn⟶2Ag+ZnCl2
Zinc is oxidised , Ag is reduced .
Ag⁺ converts to Ag . ( oxidation number is reduced ) so Ag is reduced.
Zn converts to Zn⁺² ( oxidation number is increased ) so Zn is oxidised .
4NH₃+3O₂⟶2N₂+6H₂O
oxidation number of nitrogen in ammonia is - 3
oxidation no of nitrogen in nitrogen is zero.
Oxidation no of nitrogen is increased so it is oxidised.
oxidation no of oxygen is zero in oxygen and its oxidation no in water is -2 . So oxidation no is reduced so oxidation is reduced.
Fe₂O₃+2Al⟶Al₂O₃+2Fe
oxidation no of Fe in Fe₂O₃ is + 3 and it is zero in Fe so iron is reduced.
oxidation no of Al in Al is zero and it is +3 in Al₂O₃ so it is oxidised .
Here we have to get the moles of hydrogen (H₂) consumed to form water (H₂O) from 1.57 moles of oxygen (O₂)
In this process 3.14 moles of H₂ will be consumed.
The balanced reaction between oxygen (O₂) and hydrogen (H₂); both of which are in gaseous state to form water, which is liquid in nature can be written as-
2H₂ (g) + O₂ (g) = 2H₂O (l).
Thus form the equation we can see that 1 mole of oxygen reacts with 2 moles of hydrogen to form 2 moles of water.
So, 1.57 moles of oxygen will consume (1.57×2) = 3.14 moles of hydrogen to form water.
Answer: Option (c) is the correct answer.
Explanation:
A water molecule is made up of two hydrogen atoms and one oxygen atom. Due to the difference in electronegativity of hydrogen and oxygen, the electrons are pulled more towards oxygen atom.
As a result, a partial positive charge will develop on hydrogen atom and a partial negative charge will develop on oxygen atom.
Thus, we can conclude that adjacent water molecules interact through the electrical attraction between the hydrogen of one water molecule and the oxygen of another water molecule.
The question asks about the average kinetic energy so it is not related with mass. We only need to compare the temperature. The higher temperature is, the higher kinetic energy is. So the answer is (2).
Molybdenum Arsenide
I think that’s right but not %100 sure