Given mass of tungsten, W = 415 g
Molar mass of tungsten, W = 183.85 g/mol
Calculating moles of tungsten from mass and molar mass:

Answer:
molecular weight (Mb) = 0.42 g/mol
Explanation:
mass sample (solute) (wb) = 58.125 g
mass sln = 750.0 g = mass solute + mass solvent
∴ solute (b) unknown nonelectrolyte compound
∴ solvent (a): water
⇒ mb = mol solute/Kg solvent (nb/wa)
boiling point:
- ΔT = K*mb = 100.220°C ≅ 373.22 K
∴ K water = 1.86 K.Kg/mol
⇒ Mb = ? (molecular weight) (wb/nb)
⇒ mb = ΔT / K
⇒ mb = (373.22 K) / (1.86 K.Kg/mol)
⇒ mb = 200.656 mol/Kg
∴ mass solvent = 750.0 g - 58.125 g = 691.875 g = 0.692 Kg
moles solute:
⇒ nb = (200.656 mol/Kg)*(0.692 Kg) = 138.83 mol solute
molecular weight:
⇒ Mb = (58.125 g)/(138.83 mol) = 0.42 g/mol
Answer:2.86x10^-7m
Explanation:E=hc/^
E=6.94x10^-19J
c = 2.9979x10^8m/s
h= 6.626x10^-34Js
^ =( 6.626x10^-34)x( 2.9979x 10^8)/ 6.94x10^-19
= 2.86x10^-7m
Mass of the gas m = 1.66
The calculated temperature T = 273 + 20 = 293
We have to calculate molar mass to determine the gas
Molar Mass = mRT / PV
M = (1.66 x 8.314 x 293) / (101.3 x 1000 x 0.001)
M = 4043.76 / 101.3 = 39.92 g/mol
So this gas has to be Argon Ar based on the molar mass.