When the titration of HCN with NaOH is:
HCN (aq) + OH- (aq) → CN-(aq) + H2O(l)
So we can see that the molar ratio between HCN: OH-: CN- is 1:1 :1
we need to get number of mmol of HCN = molarity * volume
= 0.2 mmol / mL* 10 mL = 2 mmol
so the number of mmol of NaOH = 2 mmol according to the molar ratio
so, the volume of NaOH = moles/molarity
= 2 mmol / 0.0998mL
= 20 mL
and according to the molar ratio so, moles of CN- = 2 mmol
∴the molarity of CN- = moles / total volume
= 2 mmol / (10mL + 20mL ) = 0.0662 M
when we have the value of PKa = 9.31 and we need to get Pkb
so, Pkb= 14 - Pka
= 14 - 9.31 = 4.69
when Pkb = -㏒Kb
4.69 = -㏒ Kb
∴ Kb = 2 x 10^-5
and when the dissociation reaction of CN- is:
CN-(aq) + H2O(l) ↔ HCN(aq) + OH- (aq)
by using the ICE table:
∴ the initials concentration are:
[CN-] = 0.0662 M
and [HCN] = [OH]- = 0 M
and the equilibrium concentrations are:
[CN-] = (0.0662- X)
[HCN] = [OH-]= X
when Kb expression = [HCN][OH-] /[CN-]
by substitution:
2 x 10^-5 = X^2 / (0.0662 - X)
X = 0.00114
∴[OH-] = X = 0.00114
when POH = -㏒[OH]
= -㏒ 0.00114
POH = 2.94
∴PH = 14 - 2.94 = 11.06
Answer:
Explanation:
Glucose + ATP → glucose 6-phosphate + ADP The equilibrium constant, Keq, is 7.8 x 102.
In the living E. coli cells,
[ATP] = 7.9 mM;
[ADP] = 1.04 mM,
[glucose] = 2 mM,
[glucose 6-phosphate] = 1 mM.
Determine if the reaction is at equilibrium. If the reaction is not at equilibrium, determine which side the reaction favors in living E. coli cells.
The reaction is given as
Glucose + ATP → glucose 6-phosphate + ADP
Now reaction quotient for given equation above is
![q=\frac{[\text {glucose 6-phosphate}][ADP]}{[Glucose][ATP]}](https://tex.z-dn.net/?f=q%3D%5Cfrac%7B%5B%5Ctext%20%7Bglucose%206-phosphate%7D%5D%5BADP%5D%7D%7B%5BGlucose%5D%5BATP%5D%7D)

so,
⇒ following this criteria the reaction will go towards the right direction ( that is forward reaction is favorable until q = Keq
Newton's first law of motion is the law of inertia. There are basically "two parts" to the law of inertia. The first part says that an object at rest tends to remain at rest unless it is acted on by an outside force. Think of gravity.
-Hope that helps!! :)
First you need to find the amount of mass of Na2CO3 in one moles
(Use periodic chart)
Na= 22.99 x 2 = 45.98
C = 12.01
O = 16.00 x 4 = 64.00
Add the molar masses together to get 121.99
To find how many grams are in 4 moles, times 121.99 by 4
This gives you 487.96
But the questions asks for the answer to be in kilograms nor grams, to change into kilograms divide by 1000
This gets you the answer: 0.49 kg