FeSO₄ + Al --> Al₂(SO₄)₃ + Fe
It's a single replacement, because the SO₄ is transferring from the Iron to the Aluminum.
To counter the removal of A the equilibrium change by <u>s</u><em>hifting toward the left</em>
<em> </em><u><em>explanation</em></u>
<u><em> </em></u>If the reaction is at equilibrium and we alter the condition a new equilibrium state is created
<u><em> </em></u>The removal of A led to the shift of equilibrium toward the left since it led to less molecules in reactant side which favor the backward reaction.( equilibrium shift to the left)
When ΔG° is the change in Gibbs free energy
So according to ΔG° formula:
ΔG° = - R*T*(㏑K)
here when K = [NH3]^2/[N2][H2]^3 = Kc
and Kc = 9
and when T is the temperature in Kelvin = 350 + 273 = 623 K
and R is the universal gas constant = 8.314 1/mol.K
So by substitution in ΔG° formula:
∴ ΔG° = - 8.314 1/ mol.K * 623 K *㏑(9)
= - 4536
I believe the correct answer is the first option. To increase the molar concentration of the product N2O4, you should increase the pressure of the system. You cannot determine the effect of changing the temperature since we cannot tell whether it is an endothermic or an exothermic reaction. Also, decreasing the number of NO2 would not increase the product rather it would shift the equilibrium to the left forming more reactants. The only parameter we can change would be the pressure. And, since NO2 takes up more space than the product increasing the pressure would allow the reactant to collide more forming the product.