The force that holds protons and neutrons together is too strong to overcome.
<h3>Explanation</h3>
Consider the location of the particles in an atom.
- Electrons are found outside the nucleus.
- Protons and neutrons are found within the nucleus.
Protons carry positive charges and repel each other. The nucleus will break apart without the strong force that holds the protons and neutrons together. This force is much stronger than the attraction between the nucleus and the electrons. X-rays are energetic enough for removing electrons from an atom. However, you'll need a collider to remove protons from a stable nucleus. You could well have ionized the atom with all that energy.
Also, changing the number of protons per nucleus will convert the halogen atom to an atom of a different element. Rather than making the halogen negative, removing a proton will convert the halogen atom to the negative ion of a different element.
Answer:
1.6 L is the volume of NaOH that has reacted
Explanation:
The balanced reaction is:
H₂SO₄ + 2NaOH → Na₂SO₄ + 2H₂O
This is a neutralization reaction between a strong acid and a strong base. The products are the correspond salt and water.
We propose this rule of three:
1 mol of sulfuric acid needs 2 mol of NaOH to react to react
Then, 2.4 moles of H₂SO₄ will react with (2.4 . 2) / 1 = 4.8 moles of NaOH
As molarity is 3M, we can determine the volume of our solution
Molarity (M) = mol / volume(L) → Volume(L) = mol / Molarity
Volume(L) = 4.8 mol / 3 M = 1.6 L
Answer:

Explanation:
Hello,
a) In this case, since the heat associated with the dissolution of ammonium nitrate is positive, such reaction is endothermic as it absorbs heat.
b) Now, for computing the temperature once the dissolution is done, we apply (considering that it is a cooling process):

Nonetheless, we should first compute the moles of the mixture as:

Thus, the total absorbed heat is:

Now, the temperature is:

Best regards.
Answer:
The volume of mercury-contaminated water that has to be consumed to ingest 0.100 g mercury is 2.50 × 10⁴ l
Explanation:
Hi there!
First, let´s convert 0.100 g to mg:
0.100 g · (1000 mg/1 g) = 100 mg
The contaminated water has 0.004 mg per liter, then, we have to find the volume of water that contains 100 mg of mercury:
100 mg · (1 l / 0.004 mg) = 2.50 × 10⁴ l
Then, the volume of mercury-contaminated water ( at a concentration of 0.004 mg/l) that has to be consumed to ingest 0.100 g mercury is 2.50 × 10⁴ l
Have a nice day!