Answer:
Volume of lithium atom is found to be 1.47 X 10⁻²⁹ m³
Explanation:
Let us consider the volume of atom as a sphere (but it is little complex than that). This volume is mathematically expressed as,
----------------------------------------------------------------------------------------(Eq. 1)
Here, R is the radius of lithium atom. The radius is given in picometers, so firstly let us convert it into meters


placing this value in Eq.1 the required result is achieved

V= 1.47 X 10⁻²⁹ m³
Question 1 the answer is sheng
Question 2 is Zheng
Question 3 is B
The trick for this problem is to understand atomic mass: the fact that different atoms have different masses. What we need to do is add up all the atomic masses of the compound and work out the ratio of mass of water to the mass of sodium carbonate. Atomic masses are often given for each atom in the periodic table, but you can look them up on google too.
You can do this by adding up individual atoms for each molecule, or you can shortcut and lookup the molar mass of the compound (i.e.the task already done for you).
The molar mass of water is 18.01g/mole so for 10 moles of water we have a mass of 180.1g.
The molar mass of sodium carbonate is 106g/mole (google).
So the total mass of the sodium carbonate decahydrate compound is 180.1+106 = 286.1g, of which water would make up 180.1g, so the percentage of water is is 180.1/286.1 = 0.629, so we can round this to 63%
:)
(46x8.0)+(47x7.8)+(48x73.4)+(49x5.5)+(50x5.3) = 4792.3
4792.3/100 = 47.923 this is the average atomic mass of Titanium
c. A full s subshell is able to shield a newly filled p subshell from the nucleus, making the first electron in a p subshell easy to remove.
Explanation:
From the given options, a full s-sublevel is able to shield a newly filled p-subshell from the nucleus thereby making the first electron in a p-subshell easy to remove is correct.
What is ionization energy?
Ionization energy is a measure of the readiness of an atom to lose an electron.
First ionization energy is the energy required to remove the most loosely held electron in the gas phase.
The size of an atom/element depends on the number of electrons it contains. The more the electrons, the larger its size.
- The larger an atom becomes the lesser the ionization energy needed to remove the first electron from its outermost shell.
Electron - electron repulsion occurs when two electrons in the same sub-level repels one another.
Shielding effect is the ability of the inner electrons to protect the outer electrons from the pull of the nuclear charge.
In option C, a s-subshell has a greater shielding effect than the p,d and f sub-shell in that order.
A newly introduced electron in the p-sublevel will be loosely held and easier to remove.
Learn more:
First ionization energy brainly.com/question/2153804
#learnwithBrainly