Answer:
1.98 M
Explanation:
Given data
- Initial volume (V₁): 93.2 mL
- Initial concentration (C₁): 2.03 M
- Volume of water added: 3.92 L
Step 1: Convert V₁ to liters
We will use the relationship 1 L = 1000 mL.

Step 2: Calculate the final volume (V₂)
The final volume is the sum of the initial volume and the volume of water.

Step 3: Calculate the final concentration (C₂)
We will use the dilution rule.

2.10098*10^47 atoms
Because no. Of atoms = no. Of moles * avogadros no
Answer:
The mass is recorded as 32.075 g
Explanation:
"The first digit of uncertainty is taken as the last significant digit", this is the rule for significant figures in the analysis. The balance measures the mass up to three decimal places, so it makes the most sense to note the whole figure.
Answer:
D. 91.98K
Explanation:
The General Gas Law equation is given by,

From the question,
the initial pressure,

the initial volume,

the final temperature,

the final pressure,

the final volume,

Making

the subject of the expression, we obtain

By substitution,


Hence the initial temperature was 91.98 K
Molar mass CaCl₂ = 110.98 g/mol
Number of moles:
1 mole CaCl₂ ---------> 110.98 g
n mole CaCl2 ---------> 85.3 g
n = 85.3 / 110.98
n = 0.7686 moles of CaCl₂
Volume = ?
M = n / V
0.788 = 0.7686 / V
V = 0.7686 / 0.788
V = 0.975 L
hope this helps!