To be able to answer this equations, we must set given information. Suppose the reaction to yield NO is:
N₂ + O₂ → 2 NO
Next, suppose you have 1 g of each of the reactants. Determine first which is the limiting reactant.
1 g N₂ (1 mol N₂/ 28 g)(2 mol NO/1 mol N₂)= 0.07154 mol NO present
Number of molecules = 0.07154 mol NO(6.022×10²³ molecules/mol)
<em>Number of molecules = 4.3×10²² molecules NO present</em>
Answer:
Option D is correct.
H₂O + CO₂ → H₂CO₃
Explanation:
First of all we will get to know what law of conservation of mass states.
According to this law, mass can neither be created nor destroyed in a chemical equation.
This law was given by French chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
Example:
6CO₂ + 6H₂O + energy → C₆H₁₂O₆ + 6O₂
there are six carbon atoms, eighteen oxygen atoms and twelve hydrogen atoms on the both side of equation so this reaction followed the law of conservation of mass.
Now we will apply this law to given chemical equations:
A) H₂ + O₂ → H₂O
There are two hydrogen and two oxygen atoms present on left side while on right side only one oxygen and two hydrogen atoms are present so mass in not conserved. This equation not follow the law of conservation of mass.
B) Mg + HCl → H₂ + MgCl₂
In this equation one Mg, one H and one Cl atoms are present on left side while on right side two hydrogen, one Mg and two chlorine atoms are present. This equation also not follow the law of conservation of mass.
C) KClO₃ → KCl + O₂
There are one K, one Cl and three O atoms are present on left side of chemical equation while on right side one K one Cl and two oxygen atoms are present. This equation also not following the law of conservation of mass.
D) H₂O + CO₂ → H₂CO₃
There are two hydrogen, one carbon and three oxygen atoms are present on both side of equation thus, mass remain conserved. Thus is correct option.
Answer: Reaction 1 is non spontaneous.
Explanation:
According to Gibb's equation:

= Gibbs free energy
= enthalpy change
= entropy change
T = temperature in Kelvin
When
= +ve, reaction is non spontaneous
= -ve, reaction is spontaneous
= 0, reaction is in equilibrium
For the given reaction 1:

As for the reaction 1 , the value of Gibbs free energy is positive and thus the reaction 1 is non spontaneous.
Answer:
An airplane
Explanation:
An airplane because of its position .
Answer:
86 mL
Explanation:
First find the moles of Pb (NO3)2
n=cv
where
c ( concentration)= 0.210 M
v ( volume in L) =0.05
n= 0.210 × 0.05
n= 0.0105
Using the mole ratio, we can find the moles of KCl by multiplying by 2
n (KCl) =0.0105 ×2
=0.021
v (KCl)= n/ c
= 0.021/ 0.244
=0.08606557377
=0.086 L
= 86 mL