Answer:
Explanation:
Since water has a chemical formula of H2O , there will be 2 moles of hydrogen in every mole of water. In one mole of water, there will exist approximately 6.02⋅1023 water molecules.
Molarity = number of moles of solute/liters of solution
number of moles of solute = molarity x liters of solution
Part (a): <span>30.00 ml of 0.100m Cacl2
number of moles of CaCl2 = 0.1 x 0.03 = 3x10^-3 moles
1 mole of CaCl2 contains 2 moles of chlorine, therefore 3x10^-3 moles of CaCl2 contains 6x10^-3 moles of chlorine
Part (b): </span><span>10.0 ml of 0.500m bacl2
number of moles of BaCl2 = 0.5 x 0.01 = 5x10^-3 moles
1 mole of BaCl2 contains 2 moles of chlorine, therefore 5x10^-3 moles of BaCl2 contains 10x10^-3 moles of chlorine
Part (c): </span><span>4.00 ml of 1.000m nacl
number of moles of NaCl = 1 x 0.004 = 0.004 moles
1 mole of NaCl contains 1 mole of chlorine, therefore 4x10^-3 moles of NaCl contains 4x10^-3 moles of chlorine
Part (d): </span><span>7.50 ml of 0.500m fecl3
number of moles of FeCl3 = 0.5 x 0.0075 = 3.75x10^-3 moles
1 mole of FeCl3 contains 3 moles of chlorine, therefore 3.75x10^-3 moles of FeCl3 contains 0.01125 moles of chlorine
Based on the above calculations, the correct answer is (d)</span>
The answer is (4) Add enough solvent to 30.0 g of solute to make 1.0 L solution. The molarity is calculated using volume of the solution. When solute dissolving, the total volume will change. So the final volume of solution need to be 1.0 L.
Answer:
Explanation:
wavelength λ = 12.4 x 10⁻² m .
energy of one photon = h c / λ
= 6.6 x 10⁻³⁴ x 3 x 10⁸ / 12.4 x 10⁻²
= 1.6 x 10⁻²⁴ J .
Let density of coffee be equal to density of water .
mass of coffee = 255 x 1 = 255 g
heat required to heat up coffee = mass x specific heat x rise in temp
= 255 x 4.18 x ( 62-25 )
= 39438.3 J .
No of photons required = heat energy required / energy of one photon
= 39438.3 / 1.6 x 10⁻²⁴
= 24649 x 10²⁴
= 24.65 x 10²⁷ .
Answer:
The MAD of city 2 is less than the MAD for city 1, which means the average monthly temperature of city 2 vary less than the average monthly temperatures for City 1.
Explanation:
For comparing the mean absolute deviations of both data sets we have to calculate the mean absolute deviation for both data sets first,
So for city 1:
Now to calculate the mean deviations mean will be subtracted from each data value. (Note: The minus sign is ignored as the deviation is the distance of value from the mean and it cannot be negative. For this purpose absolute is used)
The deviations will be added then.
So the mean absolute deviation for city 1 is 24 ..
For city 2:
Now to calculate the mean deviations mean will be subtracted from each data value. (Note: The minus sign is ignored)
The deviations will be added then.
So the MAD for city 2 is 11.33 ..
So,
The MAD of city 2 is less than the MAD for city 1, which means the average monthly temperature of city 2 vary less than the average monthly temperatures for City 1.