273 Kelvin, 0 degrees Celsius, 32 degrees Fahrenheit
Answer:
Mass of Ca in sample, Mass of Br in sample, Number of moles of Ca in sample, Number of moles of Br in sample, Mass or moles of element other than Ca or Br in sample
Explanation:
The AP Classroom will not count your answer to this question as correct unless it includes at least one of the answers listed above. If you say that theanswer to this question is density, it will be marked as incorrect, I found that out the hard way when I used the answers that brainly gave me.
Good luck,
I applaud you for using the sources avalible to you, which is /definetly not/ cheeting.
Answer:
The answer is (A)
Explanation:
When the weather changes, nature also changes because most plants rely on photosynthesis and if they don't get as much light then they can't support as much as they used causing them to shut down parts of the plant.
Answer:
8.9 KJ
Explanation:
Given data:
Mass of strip = 251 g
Initial temperature = 22.8 °C
Final temperature = 75.9 °C
Specific heat capacity of granite = 0.67 j/g.°C
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 75.9 °C - 22.8 °C
ΔT = 53.1 °C
Q = 251 g × 0.67 j/g.°C × 53.1 °C
Q = 8929.8 J
Jolue to KJ.
8929.8J ×1 KJ / 1000 J
8.9 KJ
The question is incomplete , complete question is:
Hydrogen, a potential future fuel, can be produced from carbon (from coal) and steam by the following reaction:

Note that the average bond energy for the breaking of a bond in CO2 is 799 kJ/mol. Use average bond energies to calculate ΔH of reaction for this reaction.
Answer:
The ΔH of the reaction is -626 kJ/mol.
Explanation:

We are given with:



ΔH = (Energies required to break bonds on reactant side) - (Energies released on formation of bonds on product side)



The ΔH of the reaction is -626 kJ/mol.