PbO2
You have to take the mass of lead in the problem, and divide by the molar mass.
When you do the same with oxygen, you get a number about twice as large as when you divide the mass of lead by the molar mass of lead. This means that the simplest formula would be PbO2
Volume:
2.00 x 11.0 x 11.0 => 242 cm³
mass : 213 g
D = m / V
D = 213 / 242
D = 0.880 g/cm³
Answer B
hope this helps!
Answer:
k = 23045 N/m
Explanation:
To find the spring constant, you take into account the maximum elastic potential energy that the spring can support. The kinetic energy of the car must be, at least, equal to elastic potential energy of the spring when it is compressed to its limit. Then, you have:
(1)
M: mass of the car = 1050 kg
k: spring constant = ?
v: velocity of the car = 8 km/h
x: maximum compression of the spring = 1.5 cm = 0.015m
You solve the equation (1) for k. But first you convert the velocity v to m/s:


The spring constant is 23045 N/m
Answer:
D. The atoms are arranged with alternating positive and negative charges. When struck, the lattice shifts putting positives against positives and negatives against negatives.
Explanation:
Metallic crystals takes their properties as a result of metallic bonds in between the atoms.
Metallic bond is actually the attraction between the positive nuclei of all the closely packed atoms in the lattice and the electron cloud jointly formed by all the atoms by losing their outermost shell electrons this is by virtue of their low ionization energy.
Physical properties of metals such as malleability, ductility, electrical conductivity, etc can be accounted for by metallic bonds.