The equilibrium constant Kc for this reaction is calculated as follows
from the equation N2 + 3H2 =2 NH3
qc = (NH3)2/{(N2)(H2)^3}
Qc is therefore = ( 0.001)2 /{(0.1) (0.05)^3} = 0.08
Answer:
The cell reaction reaches equilibrium quickly and the cell emf becomes zero.
Explanation:
The purpose of a salt bridge is not to move electrons from the electrolyte, its main function is to maintain charge balance because the electrons are moving from one-half cell to the other.
A solution of a salt that dissociates easily is normally used. Water is ineffective at functioning as a salt bridge. Hence the effect stated in the answer.
Using the combined gas law, where PV/T = constant, we first solve for PV/T for the initial conditions: (4.50 atm)(36.0 mL)/(10.0 + 273.15 K) = 0.57213.
Remember to use absolute temperature.
For the final conditions: (3.50 atm)(85.0 mL)/T = 297.5/T
Since these must equal, 0.57213 = 297.5/T
T = 519.98 K
Subtracting 273.15 gives 246.83 degC.
According to the Law of Conservation of Energy, energy is neither created nor destroyed. It is an entity that's always existing in the environment. It takes different forms of energy. Among the choices, the best answer would be letter B. Chemical energy. The chemical energy originates from the energy within the muscles that are dormant. Once used, this chemical energy is transformed into mechanical energy by the action of pushing his foot on the ground.
Iron doesn't fit because it doesn't have enough atoms or protons in its nucleus so there for it belongs in column 2. <span />