answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Svetllana [295]
2 years ago
8

The iodide ion reacts with hypochlorite ion (the active ingredient in chlorine bleaches) in the following way: OCl−+I−→OI−+Cl− T

his rapid reaction gives the following rate data: [OCl−] (M) [I−] (M) Initial Rate (M/s) 1.5×10−3 1.5×10−3 1.36×10−4 3.0×10−3 1.5×10−3 2.72×10−4 1.5×10−3 3.0×10−3 2.72×10−4A. Write the rate law for this reaction.B. Calculate the rate constant with proper units.C. Calculate the rate when [OCl?]= 1.8×10?3 M and [I?]= 6.0×10?4 M .
Chemistry
1 answer:
motikmotik2 years ago
8 0

Answer :

(a) The rate law for the reaction is:

\text{Rate}=k[OCl^-]^1[I^-]^1

(b) The value of rate constant is, 60.4M^{-1}s^{-1}

(c) rate of the reaction is 6.52\times 10^{-5}Ms^{-1}

Explanation :

Rate law : It is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.

For the given chemical equation:

OCl^-+I^-\rightarrow OI^-+Cl^-

Rate law expression for the reaction:

\text{Rate}=k[OCl^-]^a[I^-]^b

where,

a = order with respect to OCl^-

b = order with respect to I^-

Expression for rate law for first observation:

1.36\times 10^{-4}=k(1.5\times 10^{-3})^a(1.5\times 10^{-3})^b ....(1)

Expression for rate law for second observation:

2.72\times 10^{-4}=k(3.0\times 10^{-3})^a(1.5\times 10^{-3})^b ....(2)

Expression for rate law for third observation:

2.72\times 10^{-4}=k(1.5\times 10^{-3})^a(3.0\times 10^{-3})^b ....(3)

Dividing 1 from 2, we get:

\frac{2.72\times 10^{-4}}{1.36\times 10^{-4}}=\frac{k(3.0\times 10^{-3})^a(1.5\times 10^{-3})^b}{k(1.5\times 10^{-3})^a(1.5\times 10^{-3})^b}\\\\2=2^a\\a=1

Dividing 1 from 3, we get:

\frac{2.72\times 10^{-4}}{1.36\times 10^{-4}}=\frac{k(1.5\times 10^{-3})^a(1.5\times 10^{-3})^b}{k(1.5\times 10^{-3})^a(3.0\times 10^{-3})^b}\\\\2=2^b\\b=1

Thus, the rate law becomes:

\text{Rate}=k[OCl^-]^a[I^-]^b

a  = 1 and b = 1

\text{Rate}=k[OCl^-]^1[I^-]^1

Now, calculating the value of 'k' (rate constant) by using any expression.

1.36\times 10^{-4}=k(1.5\times 10^{-3})(1.5\times 10^{-3})

k=60.4M^{-1}s^{-1}

Now we have to calculate the rate for a reaction when concentration of OCl^-  and I^-  is 1.8\times 10^{-3}M and 6.0\times 10^{-4}M respectively.

\text{Rate}=k[OCl^-][I^-]

\text{Rate}=(60.4M^{-1}s^{-1})\times (1.8\times 10^{-3}M)(6.0\times 10^{-4}M)

\text{Rate}=6.52\times 10^{-5}Ms^{-1}

Therefore, the rate of the reaction is 6.52\times 10^{-5}Ms^{-1}

You might be interested in
A cube of steel has dimensions 0.2 mx 0.2 m * 0.2 m. What is
never [62]

Answer: 800”

Explanation:

5 0
2 years ago
Read 2 more answers
A quantity of 85.0 mL of 0.900 M HCl is mixed with 85.0 mL of 0.900 M KOH in a constantpressure calorimeter that has a heat capa
bogdanovich [222]

Explanation:

The given data is as follows.

         V_{1} = 85.0 ml,        M_{1} = 0.9 M

         V_{2} = 85.0 ml,        M_{1} = 0.9 M

Hence, number of moles of HCl and KOH will be the same because both the solutions have same volume and molarity.

So,     No. of moles = Molarity × Volume

                                = 0.9 M \times 0.085 L        (as 1 L = 1000 ml so, 85 ml = 0.085 L)

                                = 0.076 mol

As 1 mole gives 56.2 kJ/mol of heat of neutralization. Hence, calculate the heat of neutralization given by 0.076 moles as follows.

              56.2 kJ/mol \times 0.076 mol

                    = 4.271 kJ

or,                 = 4271 J     (as 1 kJ = 1000 J)

Therefore,    heat released = - heat of gained by calorimeter

Since, it is given that density of the solution is similar to the density of water which is 1 g/ml.

Hence,     mass of HCl = density × Volume of HCl

                                      = 1.00 g/ml × 85.0 ml

                                       = 85 g

Similarly,    mass of KOH = = density × Volume of HCl

                                      = 1.00 g/ml × 85.0 ml

                                       = 85 g

Hence, total mass of the solution = 85 g + 85 g

                                                        = 170 g

Also,                   q = mC \Delta T

                     4271 J = 170 g \times 325 J/^{o}C \times (T_{f} - 18.24)^{o}C    

                     0.0773 = T_{f} - 18.24

                    T_{f} = 18.317^{o}C  

Thus, we can conclude that final temperature of the mixed solution is 18.317^{o}C.

6 0
2 years ago
Identify the conjugate acid base pair <br> H3PO4(ag)+CO32=HCO3-(ag)+HPO42-(ag)
viktelen [127]

Answer:

H₃PO₄/H₂PO₄⁻ and HCO₃⁻/CO₃²⁻

Explanation:

An acid is a proton donor; a base is a proton acceptor.

Thus, H₃PO₄ is the acid, because it donates a proton to the carbonate ion.

CO₃²⁻ is the base, because it accepts a proton from the phosphoric acid.

The conjugate base is what's left after the acid has given up its proton.

The conjugate acid is what's formed when the base has accepted a proton.

H₃PO₄/H₂PO₄⁻ make one conjugate acid/base pair, and HCO₃⁻/CO₃²⁻ are the other conjugate acid/base pair.

H₃PO₄ + CO₃²⁻ ⇌ H₂PO₄⁻ + HCO₃⁻

acid       base         conj.       conj.

                               base       acid

3 0
2 years ago
a student adds 3.5 moles of solute to enough water to make a 1500mL solution. what is the concentration?
aksik [14]
<h2>Hello!</h2>

The answer is:

MolarConcentration=\frac{3.5moles}{volume(1.5L)}=2.33molar

<h2>Why?</h2>

Since there is not information about the solute but only its mass, we need to assume that we are calculating the molar concentration of a solution or molarity. So, need to use the following formula:

MolarConcentration=\frac{mass(solute)}{volume(solution)}

Now, we know that the mass of the solute is equal  3.5 moles and the volume is equal to 1500 mL or 1.5L

Then, substituting into the equation, we have:

MolarConcentration=\frac{3.5moles}{1.5L}=2.33molar

Have a nice day!

7 0
2 years ago
Read 2 more answers
What is the molarity of a solution that contains 0.500 mole of kno3 dissolved in 0.500-liter of solution?
belka [17]

Answer : The molarity of solution is, 1.00 M

Explanation : Given,

Moles of KNO_3 = 0.500 mol

Volume of solution = 0.500 L

Molarity : It is defined as the number of moles of solute present in one liter of volume of solution.

Formula used :

\text{Molarity}=\frac{\text{Moles of }KNO_3}{\text{Volume of solution (in L)}}

Now put all the given values in this formula, we get:

\text{Molarity}=\frac{0.500mol}{0.500L}=1.00mole/L=1.00M

Therefore, the molarity of solution is, 1.00 M

7 0
2 years ago
Other questions:
  • The density of lead is 11.4 g/cm3 at 20°C. A chemist has a metallic sample that is either pure lead or mostly lead. If the densi
    8·2 answers
  • Gina made a poster for plastic recycling week and included this information on her poster: What corrections should Gina make? Ch
    15·2 answers
  • Which of the following distinguishes the isotope mercury-196 from the isotope mercury-199?
    14·1 answer
  • How is platinum used to help regulate the release of harmful gases from cars?
    9·2 answers
  • Place each charge form of alanine under the pH condition where it would be the predominant form. The pKa values for the carboxyl
    8·1 answer
  • During a titration the following data were collected. A 20.0 mL portion of solution of an unknown acid HX was titrated with 2.0
    10·1 answer
  • Write the Lewis structure for ethanol (CH3CH2OH), the alcohol found in alcoholic beverages, then answer the following questions:
    14·1 answer
  • When oxygen is depleted, the citric acid cycle stops. What could we add to the system to restore citric acid cycle activity (oth
    9·1 answer
  • How many grams of C5H12 must be burned to heat 1.39 kg of water from 21.2 °C to 97.0 °C? Assume that all the heat released durin
    8·1 answer
  • In an experiment, hydrochloric acid reacted with different volumes of sodium thiosulfate in water. A yellow precipitate was form
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!