<span>when it comes to adding or subtracting numbers, his final answer should have the same number of decimal places as the least precise value.
For example if you add 2 numbers; 10.443 + 3.5 , 10.443 has 3 decimal places and 3.5 has only one decimal place.
Therefore 3.5 is the less precise value.
So when adding these 2 values the final answer should have only one decimal place.
after adding we get 13.943 but it can have upto one decimal place. then the second decimal place is less than 5 so the answer should be rounded off to 13.9.
the answer is the same number of decimal places as the least precise value</span>
Answer:
IHD = 0
Explanation:
Given that
C₆H₁₅N
Number of carbon atoms(n) = 6
Number of hydrogen atoms(x') = 15
Number of nitrogen atoms = 1
There is nitrogen atoms then x = x' -1
The index of hydrogen deficiency given as

So


IHD = 0
The index of hydrogen deficiency is zero.
Actually mass and weight are two different things but most people did not understand the difference between them. And they are used synonymously on the earth. Mass is the measure of the amount of matter and weight is the measure of how the force of gravity acts on the mass that is Weight = mass x force of gravity. And they are also directly proportional to each other that is also the reason both terms are used synonymously.
Problem One (left)
This is just a straight mc deltaT question
<em><u>Givens</u></em>
m = 535 grams
c = 0.486 J/gm
tf = 50
ti = 1230
Formula
E = m * c * (ti - tf)
Solution
E = 535 * 0.486 * ( 1230 - 50)
E = 535 * 0.486 * (1180)
E = 301077
Answer: A
Problem Two
This one just requires that you multiply the two numbers together and cut it down to 3 sig digits.
E = H m
H = 2257 J/gram
m = 11.2 grams
E = 2257 * 11.2
E = 25278 to three digits is 25300 Joules. Anyway it is the last one.
Three
D and E are both incorrect for the same reason. The sun and stars don't contain an awful lot of Uranium (1 part of a trillion hydrogen atoms). It's too rare. The other answers can all be eliminated because U 235 is pretty stable in its natural state. It has a high activation complex.
Your best chance would be enriched Uranium (which is another way of saying refined uranium). That would be the right environment. Atomic weapons and nuclear power plants (most) used enriched Uranium. You can google "Little Boy" if you want to know more.
Answer: B
Four
The best way to think about this question is just to get the answer. Answer C.
A: incorrect. Anything sticking together implies a larger and larger result. Gases don't work that way. They move about randomly.
B: Wrong. Heat and Temperature especially depend on movement. Stopping is not permitted. If a substance's molecules stopped, the substance would experience an extremely uncomfortable temperature drop.
C: is correct because the molecules neither stop nor do they stick. The hit and move on.
D: Wrong. An ax splitting something? That is not what happens normally and not with ordinary gases. It takes more energy that mere collisions or normal temperatures would provide to get a gas to split apart.
E: Wrong. Same sort of comment as D. Splitting is not the way these things work. They bounce away as in C.
Five
Half life number 1 would leave 0.5 grams behind.
Half life number 2 would leave 1/2 of 1/2 or 1/4 of the number of grams left.
Answer: 0.25
Answer C
Answer:
ΔH=15000
J = 15KJ
Explanation:
In this exercise you have find the enthalpy of reaction this is the difference between enthalpy of reactans and products,
For the following equation
H2A(aq) + 2 BOH(aq) → B2A(aq) + 2 H2O(l)
We know that 0.20 moles of BOH reacted with excess amount of H2A solution and 1500. J
so,
(2mol/0,2mol)*1500J=15000J
for de reactions exothermics tha enthalpy is negative so:
ΔH=15000
J = 15KJ