We are going to use this equation:
ΔT = - i m Kf
when m is the molality of a solution
i = 2
and ΔT is the change in melting point = T2- 0 °C
and Kf is cryoscopic constant = 1.86C/m
now we need to calculate the molality so we have to get the moles of NaCl first:
moles of NaCl = mass / molar mass
= 3.5 g / 58.44
= 0.0599 moles
when the density of water = 1 g / mL and the volume =230 L
∴ the mass of water = 1 g * 230 mL = 230 g = 0.23Kg
now we can get the molality = moles NaCl / Kg water
=0.0599moles/0.23Kg
= 0.26 m
∴T2-0 = - 2 * 0.26 *1.86
∴T2 = -0.967 °C
Fossil fuels, forest fires, and respiration and major metabolic process photosynthesis are left out of the model.
<u>Explanation</u>:
- The carbon cycle model contains all the activities but some points are missing in it. Oceans, the burning of fossil fuels should be explained. Natural elements such as coal and natural gas are the main elements of the carbon cycle.
- Because they are important compounds of the carbon cycle. The process of photosynthesis is very important in the carbon cycle. The process of volcanic eruption should be explained in the carbon cycle.
From the chemical formula of sulfuric acid, we can see the molar ratio:
H : S : O
2 : 1 : 4
Now, we convert the mass of hydrogen given into the moles of hydrogen. This is done using
Moles = mass / Mr
Moles = 7.27 / 1
Moles = 7.27
Therefore, the moles will be:
S = 7.27 / 2 = 3.64 moles
O = 7.27 * 2 = 14.54 moles
Now, the respective masses are:
S = 32 * 3.64 = 116.48 grams
O = 16 * 14.54 = 232.64 grams
As land use<span> patterns change and the watershed's population grows, the amount of ... </span>Other<span> solutions to nitrogen and phosphorus pollution include upgrading stormwater ... on septic systems, and decreasing </span>fertilizer<span> applications to </span><span>lawns</span>
Answer:
<u>The consequences of soil erosion</u> go beyond the loss of fertile land. It has contributed to increased runoff and sedimentation in streams and rivers, clogging these waters and causing declines in fish and other animals.
We can protect the community from soil erosion by -:
- Maintaining a good, perennial cover for plants.
- Planting a crop for cover
Explanation:
<u>SOIL EROSION -:</u> The soil erosion mechanism is both natural and man-made. In nature, this refers to the removal of the top layer of soil caused by wind and water, while human activity may increase exposure to these elements.
<u>MAJOR EFFECTS OF SOIL EROSION -:</u>
- <u>Pollution and Low Water Quality -:</u> Sedimentation is created by gradual soil erosion, a process by which rocks and minerals in the soil are separated from the soil and deposited elsewhere, often in streams and rivers. Soil contaminants, such as fertilizers and pest control agents, often settle in the streams and rivers to protect crops. Water contaminants contribute to low water quality, including drinking water quality, if the contaminants are not removed prior to ingestion. As sunlight can get through the sediment, sedimentation also leads to the excessive growth of algae. According to the World Wildlife Fund, high levels of algae drain too much oxygen from the water, resulting in the mortality of marine species and reduced fish stocks.
- <u>Structural Issues and Mudslides -:</u> Soil erosion contributes to mudslides, impacting the stability of buildings and roadways and their structural integrity. Mudslides affect not only soil-supported structures, but also buildings and roads that are in the path of slides. Mudslides occur when, as a result of the intensity and energy of heavy rainfall, fine sand , clay, silt, organic matter and soil spill off the sides of hills and slopes. According to Envirothon, a program of the National Conservation Foundation and North America's largest high school environmental education competition, this runoff happens rapidly, because there is not enough time for the surface to reabsorb or catch the eroding soil.
- <u>Flooding and Deforestation -:</u> Deforestation erodes soil — the removal of trees to create space for towns and agriculture. Trees help to maintain soil in place, so winds and rains drive the loose soil and rocks to streams and rivers when they are uprooted, resulting again in unnecessary sedimentation. The thick layers of sediment keep streams and rivers from flowing smoothly, ultimately contributing to flooding. Excess water, especially during rainy seasons and when the snow melts, gets trapped by the sediment and has nowhere to go except back on land.
- <u>The Deterioration of Soil -:</u> Soil nutrient depletion is often the result of poorly performed cultivation and cultivation practices that contribute to soil erosion. For natural vegetation and agricultural purposes, excessive irrigation and obsolete tilling practices decrease the amount of nutrients in the soil and make it less fertile.
<u>PROTECTION OF COMMUNITY FROM SOIL EROSION -</u>
- <u>Maintaining a good, perennial cover for plants -:</u> Your perennial garden's care and upkeep need not be difficult or overwhelming. A blend of certain simple horticultural values with common sense and a good eye is a great part of good gardening.
- <u>MULCHING -:</u> The amount of water that evaporates from your soil will be reduced by mulch, greatly reducing the need to water the plants. By breaking up clay and permitting better movement of water and air through the soil. Mulch supplements sandy soil with nutrients and enhances its ability to retain water.
- <u>PLANTING A CROP FOR COVER -: </u> Winter rye in vegetable gardens, for instance. This includes annual grasses, small grains , legumes and other forms of vegetation that have been planted to provide temporary vegetative cover. Cover crops are also often tilled as a 'green manure' crop under serving.