The first element to have 4d electrons in its electron configuration is Yttrium with an atomic number of 39 and the chemical symbol Y. The electron configuration of an atom refers to the distribution of its electrons in the atomic orbitals. These orbitals are represented by letters s,p,d,f and so on. The electron configuration of Yttrium is [Kr] 4d¹ 5s², wherein [Kr] refers to the electron configuration of the noble gas, Krypton.
First we will calculate the number of moles of Iron:

, where n is the number of moles, m is the mass of iron in the reaction and M is the Atomic weight.

moles of Iron.
The same number of moles of Oxygen will take part in the reaction.
So

where 32 is the Atomical Weight of Oxygen (16 x 2).
=>

g
A branched alkane has HIGHER boiling point relative to the isomeric linear alkane. There are STRONGER london force interactions in the branched alkane.
:-) ;-)
You have a few steps to solve this one. First, we'll find the molar mass by percentage of each element in the molecule. Then, we'll divide each of those relative masses by the atomic mass of each element. The number of times the mass divides into the relative mass is the number of atoms of that element in the molecule:
C: 284.5 x .76 = 216.22
H: 284.5 x .128= 36.416
O: 284.5 x .112 = 31.864.
Now we divide out each element's atomic mass (from the periodic table). it's okay if they're approximated from the decimal answer.
C: 216.22 ÷ 12.011 ≈ 18
H: 36.416 ÷ 1.008 ≈36
O: 31.864 ÷ 15.999 ≈ 2
Therefore, the molecular formula is C18H36O2.
The empirical formula would be found by dividing out all factors of those subscript numbers. In our case, all of them can be divided by 2. The empirical formula would be C9H18O
Given reaction represents dissociation of bromine gas to form bromine atoms
Br2(g) ↔ 2Br(g)
The enthalpy of the above reaction is given as:
ΔH = ∑n(products)Δ
- ∑n(reactants)Δ
where n = number of moles
Δ
= enthalpy of formation
ΔH = [2*ΔH(Br(g)) - ΔH(Br2(g))] = 2*111.9 - 30.9 = 192.9 kJ/mol
Thus, enthalpy of dissociation is the bond energy of Br-Br = 192.9 kJ/mol